Precise Calibration of Tuning Forks

Total Page:16

File Type:pdf, Size:1020Kb

Precise Calibration of Tuning Forks 228 PHILIPS TECHNICAL REVIEW VOL. 12, No. 8 PRECISE CALIBRATION OF TUNING FORKS by C. C. J. ADDINK. 681.831.3 :534.321.71 :534.63 The introduction into the field of music of the new international standard of concert pitch based on a frequency of 440 els for the 110teA3 in the middle octaveinstead of 435 cis still involves difficulties owing to the lack of good standards, the tuning forks used in practice leaving much to be desired. Hence the greater interest now being shown in accurately calibrated tuning forks. An international conference held in London in tuned higher than 435 els but often differ, in the 1939 recommended that such bodies as the "Comité positive or the negative sense, several els from the Consultatif International Téléphonique", the "In- figure of 440 els. Since there was no standard ternational Electrotechnical Commission" and the for the frequency of 440 els in this laboratory a "Union Internationale de Radiodiffusion", as method has been developed, as the first step in also the various national standardisation commit- this direction. for measuring audio frequencies tees, should fix the concert pitch at a frequency of direct (i.e. by counting the number of oscillations 440 els for the note A3 of the middle octave - in- in a time interval) and with extreme accuracy. stead of the 435 els internationally accepted at With the aid of an apparatus working according Vienna in 1885 - and that this should be adhered to this method not only have tuning forks of 440 els to as closely as possible in all musical performancesI). been calibrated but also sets of 13 tuning forks, In practice the usual tuning forks are, it is true, forming a tempered chromatic scale of one octave (fig. I) . The methodreferred to will be described here, but the question to be considered first is the degree 1) See, e.g., Internationale Ncufestsetzung des Stirnmtones, Akustische Zeitschrift 4, 288, 1939. of accuracy to be demanded from a tuning fork. Fig. 1. Set of 13 tuning forks made in the Phi1ips Laboratory. Together they form a tem- pered chromatic scale from Cl to c2, with al = 440 els. The reason for the cylindrical shape is explained in the last paragraph. FEBRUARY 1951 CALIBRATION OF TUNING FORKS 229 Accuracy required of a tuning fork frequency with sufficient accuracy without some The useful decay time of a normal tuning fork other aids. It is true that a tuning fork can be kept is 5 to 15 seconds. When the pitch of a musical in vibration by electrical means, but then, unless instrument is compared with the tuning fork in a great deal of care is taken, the frequency at which the normal way one can usually hear beats. If, it vibrates differs somewhat from the frequency however, the difference in frequency is so small of a fork vibrating freely, and it is just this free that there are no more than two or three beats vibration that has to be measured accurately. during the decay time then they are hardly notice- What is needed for calibrating, therefore, is an able as such and one has reached, the limit of the auxiliary oscillator which, once it has been matched accuracy of the tuning fork. It serves no purpose, with the freely vibrating fork, continues to oscillate therefore, to require any greater precision than in that frequency for an unlimited length of time. 0.2 cIs (one beat in 5 seconds), or in other words An RC oscillator consisting only of resistors, the frequency of the tuning fork has to lie between capacitors and amplifying valves is very suitable the limits of 439.8 and 440.2 cIs 2). (This degree for this purpose. If such an oscillator is properly of accuracy is obviously only required for musical designed, when it has reached temperature equili- instruments with a fixed tuning, such as the organ, brium the relative frequency change in the audio- the piano, the harp, etc.) The frequency, however, frequency range can be kept smaller than 1:1053). has to be determined with greater accuracy, The matching of the frequency of the oscillator because one must be quite sure of the last decimal with that of the tuning fork can be done with suffi- in the said limits. The permissible measuring error cient accuracy if a cathode-ray oscilloscope is therefore 0.05 cle, which at a frequency of 440 cIs is employed, by applying the signal from the RC amounts to a measuring accuracy of about 0.01 %. oscillator to one pair of plates and a signal with the This implies that account must be taken of the frequency of the tuning fork to the other pair. temperature when measuring and when using the The latter signal can be obtained by setting up the tuning fork in practice. The temperature coefficient tuning fork in front of a microphone. There then of the frequency in the case of a steel tuning fork appears on the screen of the oscilloscope a changing is in the order of -1 X 10-4per oe, while for the forks Lissajous figure which, when the frequencies are made of a hard aluminium alloy îllustrated in fig. 1 equal, becomes a stationary ellipse 4). it is about -2.5 X 10-4 per oe. There is, however, a drawback to this method. The Lissajous figure cannot demonstrate whether Method of measuring the frequency deviation is positive or negative, As is evident from the foregoing, for calibrating hence the operator does not know in. which direc- a tuning fork a more accurate method is needed tion to turn the oscillator tuning knob. If this is than that where the tuning fork is compared with turned in the wrong direction the consequent time a standard frequency byear. Furthermore, with loss results in the tuning fork signal having decayed frequency differences less than 0.1% the sign of too far, and the fork has to be struck again. the error can no longer be determined by car. To obviate this, the following method is adopted. The method of calibrating worked out by us The signal from an RC oscillator is applied direct briefly amounts to the following. The frequency of to one pair of input terminals of the oscilloscope an auxiliary oscillator is matched with that of the and also,. after having been shifted 90° in phase tuning fork to be calibrated and then a synchronous in a network of resistors and capacitors, to the clock is connected to the oscillator and the oscilla- other pair of terminals (fig. 2). Given the right tions made by the auxiliary oscillator in a certain proportions of amplitude of the two signals, a interval of time are counted. This time interval is circle is then produced on the screen of the oscillo- measured with the aid of a calibrated pendulum scope. timepiece. The tuning fork to be calibrated is set up front in of a microp~one, the amplified signal from which Matching the auxiliary oscillator '. 3) See, e.g., E. L. Ginzton and L. M. Hollingworth Owing to the damped character of the vibration Phase-shift oscillators, Proc. Inst. Rad. Engrs 29, 43-49: a tuning fork is not suitable for measuring the 1941; K. Bucher, Re-Generatoren, Telegr. Fernsprech- Techn. 31, 307-313, 1942. 4) For this and the other method to he described later it 2) Other authors arrive at the same tolerance another way: is an advantage to use an oscilloscope with two amplifiers H. J. von Braunmühl and O. Schubert Ein neuer one for each pair of plates, such as type GM 3159 0; elektrischer Stimmtongeher für 440 Hz' Akustische GM 5655 (Philips Techn. Rev. 9, 202-210, 1947, and n, Zeitschrift 6, 299-303, 1941. ' 111-115, 1949 (No. 4». 230 PHILIPS TECHNICAL REVIEW VOL. 12, No. 8 is used for modulating the beam current of the If a voltage source with the standard frequency is available cathode-ray tube, such that the beam current is (e.g. an electrically driven tuning fork, or the 440 cis signal allowed to pass only during the positive half cycles as regularly transmitted by the B.B.C. for tuning purposes), then the tuning-fork frequency that is to be determined can of the microphone signal. Thus only half a circle be compared directly with the standard frequency by means is seen on the screen (fig. 2). When the oscillator of the set-up shown in fig. 2, replacing tile RC oscillator by the frequency is exactly equal to the frequency of the standard frequency signal. When this method is followed a tuning fork this half circle is stationary, but when rotating half-circle is again seen, and from the number of there is a difference in frequency it rotates. The revolutions it makes in a certain time it is easy to derive the difference in frequency (the sign is indicated by the direction best method is to arrange the apparatus so that of rotation), Thus one measures, as it were, a fraction of a the tuning knob of the oscillator has to be turned beat. The accuracy is proportional to thc duration of the clockwise to increase the frequency and that the observation, being already very great at the duration of the half circle rotates clockwise if the oscillator fre- decay time..If, for instance, the half cirele makes 114 revolution quency is too high and anti-clockwise if it is too in 12.5 seconds then the frequency differenceis 0.02 cis. low. Matching is then. done very quickly, the vernier control of the oscillator being turned in Measuring the oscillator frequency with the aid of a the direction opposite to that in which the half clock circle is moving, until the latter is stationary 5).
Recommended publications
  • Sound Sensor Experiment Guide
    Sound Sensor Experiment Guide Sound Sensor Introduction: Part of the Eisco series of hand held sensors, the sound sensor allows students to record and graph data in experiments on the go. This sensor has two modes of operation. In slow mode it can be used to measure sound-pressure level in decibels. In fast mode it can display waveforms of different sound sources such as tuning forks and wind-chimes so that period and frequency can be determined. With two sound sensors, the velocity of propagation of sound in various media could be determined by timing a pulse travelling between them. The sound sensor is located in a plastic box accessible to the atmosphere via a hole in its side. Sensor Specs: Range: 0 - 110 dB | 0.1 dB resolution | 100 max sample rate Activity – Viewing Sound Waves with a Tuning Fork General Background: Sound waves when transmitted through gases, such as air, travel as longitudinal waves. Longitudinal waves are sometimes also called compression waves as they are waves of alternating compression and rarefaction of the intermediary travel medium. The sound is carried by regions of alternating pressure deviations from the equilibrium pressure. The range of frequencies that are audible by human ears is about 20 – 20,000 Hz. Sounds that have a single pitch have a repeating waveform of a single frequency. The tuning forks used in this activity have frequencies around 400 Hz, thus the period of the compression wave (the duration of one cycle of the wave) that carries the sound is about 2.5 seconds in duration, and has a wavelength of 66 cm.
    [Show full text]
  • Enharmonic Substitution in Bernard Herrmann's Early Works
    Enharmonic Substitution in Bernard Herrmann’s Early Works By William Wrobel In the course of my research of Bernard Herrmann scores over the years, I’ve recently come across what I assume to be an interesting notational inconsistency in Herrmann’s scores. Several months ago I began to earnestly focus on his scores prior to 1947, especially while doing research of his Citizen Kane score (1941) for my Film Score Rundowns website (http://www.filmmusic.cjb.net). Also I visited UCSB to study his Symphony (1941) and earlier scores. What I noticed is that roughly prior to 1947 Herrmann tended to consistently write enharmonic notes for certain diatonic chords, especially E substituted for Fb (F-flat) in, say, Fb major 7th (Fb/Ab/Cb/Eb) chords, and (less frequently) B substituted for Cb in, say, Ab minor (Ab/Cb/Eb) triads. Occasionally I would see instances of other note exchanges such as Gb for F# in a D maj 7 chord. This enharmonic substitution (or “equivalence” if you prefer that term) is overwhelmingly consistent in Herrmann’ notational practice in scores roughly prior to 1947, and curiously abandoned by the composer afterwards. The notational “inconsistency,” therefore, relates to the change of practice split between these two periods of Herrmann’s career, almost a form of “Before” and “After” portrayal of his notational habits. Indeed, after examination of several dozens of his scores in the “After” period, I have seen (so far in this ongoing research) only one instance of enharmonic substitution similar to what Herrmann engaged in before 1947 (see my discussion in point # 19 on Battle of Neretva).
    [Show full text]
  • Fftuner Basic Instructions. (For Chrome Or Firefox, Not
    FFTuner basic instructions. (for Chrome or Firefox, not IE) A) Overview B) Graphical User Interface elements defined C) Measuring inharmonicity of a string D) Demonstration of just and equal temperament scales E) Basic tuning sequence F) Tuning hardware and techniques G) Guitars H) Drums I) Disclaimer A) Overview Why FFTuner (piano)? There are many excellent piano-tuning applications available (both for free and for charge). This one is designed to also demonstrate a little music theory (and physics for the ‘engineer’ in all of us). It displays and helps interpret the full audio spectra produced when striking a piano key, including its harmonics. Since it does not lock in on the primary note struck (like many other tuners do), you can tune the interval between two keys by examining the spectral regions where their harmonics should overlap in frequency. You can also clearly see (and measure) the inharmonicity driving ‘stretch’ tuning (where the spacing of real-string harmonics is not constant, but increases with higher harmonics). The tuning sequence described here effectively incorporates your piano’s specific inharmonicity directly, key by key, (and makes it visually clear why choices have to be made). You can also use a (very) simple calculated stretch if desired. Other tuner apps have pre-defined stretch curves available (or record keys and then algorithmically calculate their own). Some are much more sophisticated indeed! B) Graphical User Interface elements defined A) Complete interface. Green: Fast Fourier Transform of microphone input (linear display in this case) Yellow: Left fundamental and harmonics (dotted lines) up to output frequency (dashed line).
    [Show full text]
  • Finale Transposition Chart, by Makemusic User Forum Member Motet (6/5/2016) Trans
    Finale Transposition Chart, by MakeMusic user forum member Motet (6/5/2016) Trans. Sounding Written Inter- Key Usage (Some Common Western Instruments) val Alter C Up 2 octaves Down 2 octaves -14 0 Glockenspiel D¯ Up min. 9th Down min. 9th -8 5 D¯ Piccolo C* Up octave Down octave -7 0 Piccolo, Celesta, Xylophone, Handbells B¯ Up min. 7th Down min. 7th -6 2 B¯ Piccolo Trumpet, Soprillo Sax A Up maj. 6th Down maj. 6th -5 -3 A Piccolo Trumpet A¯ Up min. 6th Down min. 6th -5 4 A¯ Clarinet F Up perf. 4th Down perf. 4th -3 1 F Trumpet E Up maj. 3rd Down maj. 3rd -2 -4 E Trumpet E¯* Up min. 3rd Down min. 3rd -2 3 E¯ Clarinet, E¯ Flute, E¯ Trumpet, Soprano Cornet, Sopranino Sax D Up maj. 2nd Down maj. 2nd -1 -2 D Clarinet, D Trumpet D¯ Up min. 2nd Down min. 2nd -1 5 D¯ Flute C Unison Unison 0 0 Concert pitch, Horn in C alto B Down min. 2nd Up min. 2nd 1 -5 Horn in B (natural) alto, B Trumpet B¯* Down maj. 2nd Up maj. 2nd 1 2 B¯ Clarinet, B¯ Trumpet, Soprano Sax, Horn in B¯ alto, Flugelhorn A* Down min. 3rd Up min. 3rd 2 -3 A Clarinet, Horn in A, Oboe d’Amore A¯ Down maj. 3rd Up maj. 3rd 2 4 Horn in A¯ G* Down perf. 4th Up perf. 4th 3 -1 Horn in G, Alto Flute G¯ Down aug. 4th Up aug. 4th 3 6 Horn in G¯ F# Down dim.
    [Show full text]
  • Written Vs. Sounding Pitch
    Written Vs. Sounding Pitch Donald Byrd School of Music, Indiana University January 2004; revised January 2005 Thanks to Alan Belkin, Myron Bloom, Tim Crawford, Michael Good, Caitlin Hunter, Eric Isaacson, Dave Meredith, Susan Moses, Paul Nadler, and Janet Scott for information and for comments on this document. "*" indicates scores I haven't seen personally. It is generally believed that converting written pitch to sounding pitch in conventional music notation is always a straightforward process. This is not true. In fact, it's sometimes barely possible to convert written pitch to sounding pitch with real confidence, at least for anyone but an expert who has examined the music closely. There are many reasons for this; a list follows. Note that the first seven or eight items are specific to various instruments, while the others are more generic. Note also that most of these items affect only the octave, so errors are easily overlooked and, as a practical matter, not that serious, though octave errors can result in mistakes in identifying the outer voices. The exceptions are timpani notation and accidental carrying, which can produce semitone errors; natural harmonics notated at fingered pitch, which can produce errors of a few large intervals; baritone horn and euphonium clef dependencies, which can produce errors of a major 9th; and scordatura and C scores, which can lead to errors of almost any amount. Obviously these are quite serious, even disasterous. It is also generally considered that the difference between written and sounding pitch is simply a matter of transposition. Several of these cases make it obvious that that view is correct only if the "transposition" can vary from note to note, and if it can be one or more octaves, or a smaller interval plus one or more octaves.
    [Show full text]
  • Tuning Forks As Time Travel Machines: Pitch Standardisation and Historicism for ”Sonic Things”: Special Issue of Sound Studies Fanny Gribenski
    Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies Fanny Gribenski To cite this version: Fanny Gribenski. Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies. Sound Studies: An Interdisciplinary Journal, Taylor & Francis Online, 2020. hal-03005009 HAL Id: hal-03005009 https://hal.archives-ouvertes.fr/hal-03005009 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tuning forks as time travel machines: Pitch standardisation and historicism Fanny Gribenski CNRS / IRCAM, Paris For “Sonic Things”: Special issue of Sound Studies Biographical note: Fanny Gribenski is a Research Scholar at the Centre National de la Recherche Scientifique and IRCAM, in Paris. She studied musicology and history at the École Normale Supérieure of Lyon, the Paris Conservatory, and the École des hautes études en sciences sociales. She obtained her PhD in 2015 with a dissertation on the history of concert life in nineteenth-century French churches, which served as the basis for her first book, L’Église comme lieu de concert. Pratiques musicales et usages de l’espace (1830– 1905) (Arles: Actes Sud / Palazzetto Bru Zane, 2019).
    [Show full text]
  • Pedagogical Practices Related to the Ability to Discern and Correct
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Pedagogical Practices Related to the Ability to Discern and Correct Intonation Errors: An Evaluation of Current Practices, Expectations, and a Model for Instruction Ryan Vincent Scherber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MUSIC PEDAGOGICAL PRACTICES RELATED TO THE ABILITY TO DISCERN AND CORRECT INTONATION ERRORS: AN EVALUATION OF CURRENT PRACTICES, EXPECTATIONS, AND A MODEL FOR INSTRUCTION By RYAN VINCENT SCHERBER A Dissertation submitted to the College of Music in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2014 Ryan V. Scherber defended this dissertation on June 18, 2014. The members of the supervisory committee were: William Fredrickson Professor Directing Dissertation Alexander Jimenez University Representative John Geringer Committee Member Patrick Dunnigan Committee Member Clifford Madsen Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii For Mary Scherber, a selfless individual to whom I owe much. iii ACKNOWLEDGEMENTS The completion of this journey would not have been possible without the care and support of my family, mentors, colleagues, and friends. Your support and encouragement have proven invaluable throughout this process and I feel privileged to have earned your kindness and assistance. To Dr. William Fredrickson, I extend my deepest and most sincere gratitude. You have been a remarkable inspiration during my time at FSU and I will be eternally thankful for the opportunity to have worked closely with you.
    [Show full text]
  • The Tuning Fork: an Amazing Acoustics Apparatus
    FEATURED ARTICLE The Tuning Fork: An Amazing Acoustics Apparatus Daniel A. Russell It seems like such a simple device: a U-shaped piece of metal and Helmholtz resonators were two of the most impor- with a stem to hold it; a simple mechanical object that, when tant items of equipment in an acoustics laboratory. In 1834, struck lightly, produces a single-frequency pure tone. And Johann Scheibler, a silk manufacturer without a scientific yet, this simple appearance is deceptive because a tuning background, created a tonometer, a set of precisely tuned fork exhibits several complicated vibroacoustic phenomena. resonators (in this case tuning forks, although others used A tuning fork vibrates with several symmetrical and asym- Helmholtz resonators) used to determine the frequency of metrical flexural bending modes; it exhibits the nonlinear another sound, essentially a mechanical frequency ana- phenomenon of integer harmonics for large-amplitude lyzer. Scheibler’s tonometer consisted of 56 tuning forks, displacements; and the stem oscillates at the octave of the spanning the octave from A3 220 Hz to A4 440 Hz in steps fundamental frequency of the tines even though the tines of 4 Hz (Helmholtz, 1885, p. 441); he achieved this accu- have no octave component. A tuning fork radiates sound as racy by modifying each fork until it produced exactly 4 a linear quadrupole source, with a distinct transition from beats per second with the preceding fork in the set. At the a complicated near-field to a simpler far-field radiation pat- 1876 Philadelphia Centennial Exposition, Rudolph Koenig, tern. This transition from near field to far field can be seen the premier manufacturer of acoustics apparatus during in the directivity patterns, time-averaged vector intensity, the second half of the nineteenth century, displayed his and the phase relationship between pressure and particle Grand Tonometer with 692 precision tuning forks ranging velocity.
    [Show full text]
  • Good Vibrations (Part 1 of 2): [Adapted from NASA’S Museum in a Box]
    National Aeronautics and Space Administration Good Vibrations (Part 1 of 2): [Adapted from NASA’s Museum in a Box] What is it? The transfer of energy from one material to another can be measured in different ways. One that you may not initially think of is sound. Sound can be good, as it allows us to communicate and interact with our surroundings, but sound can also cause disturbance. For example, aircraft noise can be quite loud and cause disturbance in neighborhoods. Scientists and engineers are working hard to reduce these sounds in different ways. In this activity, students will interact with tuning forks to learn about sound. This activity discusses topics related to National Science Education Standards: 4-PS4-3: Generate and compare multiple solutions that use patterns to transfer information. - This activity uses two different models to “see” sound waves, and covers discussions of the transfer of information from one material to another through waves. Materials (per team of 4 to 8 students): Equipment, provided by NASA: - Set of 4 Tuning Forks - Ping pong ball with attached string Equipment, not provided by NASA: - Container of Water (plastic food storage container would work well) - Soft item for activating tuning forks (book spine works well) Materials (per student): Printables: - Tuning Fork Worksheet Artifact included in this kit: - Fluid Mechanics Lab “Dimple Car” and Information Sheet Recommended Speakers from Ames: Please note that our Speakers Bureau program is voluntary and we cannot guarantee the availability of any speaker. To request a speaker, please visit http://speakers.grc.nasa.gov. www.nasa.gov 1 Dean Kontinos (Hypervelocity Air and Space Vehicles) Ernie Fretter (Arc-Jet, Re-entry Materials) Mark Mallinson (Space, Satellites, Moon, Shuttle Technology) Set-Up Recommendations: - Prepare copies of the Tuning Fork Worksheet.
    [Show full text]
  • Automatic Music Transcription Using Sequence to Sequence Learning
    Automatic music transcription using sequence to sequence learning Master’s thesis of B.Sc. Maximilian Awiszus At the faculty of Computer Science Institute for Anthropomatics and Robotics Reviewer: Prof. Dr. Alexander Waibel Second reviewer: Prof. Dr. Advisor: M.Sc. Thai-Son Nguyen Duration: 25. Mai 2019 – 25. November 2019 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Interactive Systems Labs Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Title: Automatic music transcription using sequence to sequence learning Author: B.Sc. Maximilian Awiszus Maximilian Awiszus Kronenstraße 12 76133 Karlsruhe [email protected] ii Statement of Authorship I hereby declare that this thesis is my own original work which I created without illegitimate help by others, that I have not used any other sources or resources than the ones indicated and that due acknowledgement is given where reference is made to the work of others. Karlsruhe, 15. M¨arz 2017 ............................................ (B.Sc. Maximilian Awiszus) Contents 1 Introduction 3 1.1 Acoustic music . .4 1.2 Musical note and sheet music . .5 1.3 Musical Instrument Digital Interface . .6 1.4 Instruments and inference . .7 1.5 Fourier analysis . .8 1.6 Sequence to sequence learning . 10 1.6.1 LSTM based S2S learning . 11 2 Related work 13 2.1 Music transcription . 13 2.1.1 Non-negative matrix factorization . 13 2.1.2 Neural networks . 14 2.2 Datasets . 18 2.2.1 MusicNet . 18 2.2.2 MAPS . 18 2.3 Natural Language Processing . 19 2.4 Music modelling .
    [Show full text]
  • Tuning the Harp with a Tuner and By
    TUNING THE HARP WITH A TUNER and TUNING BY EAR Courtesy of and by: Elizabeth Volpé Bligh www.elizabethvolpebligh.com Principal Harp, Retired, Vancouver Symphony Harp Faculty, VSOI, VSO School of Music Adjunct Professor, UBC School of Music, President, West Coast Harp Society-AHS BC Chapter I sometimes make the mistake of assuming that everyone knows how to use an electronic tuner, or to tune by ear. There is some misinformation on the Internet, so don't believe everything you see on this subject. I saw one video that said to tune with all the pedals in the natural position (don't do that)! I have articles on my web site about this subject and others. Harp Column magazine, May’s 2020 has articles on tuning and recommendations of tuning apps. https://harpcolumn.com/blog/top-apps-for-tuning/ Tune your harp every day. The harp will stay in tune better, and your tuning skills will improve. Always tune with pedals in the flat position and the discs unengaged. On a lever harp, the levers should be unengaged. This means that when you are tuning a C flat, the tuner will read its enharmonic note, "B". The F flat will read as "E". Some tuners read accidental notes only as sharps or flats, so be aware of the enharmonic names of the notes you are tuning, i.e. E flat = D#, A flat = G#. Most North American harpists tune their A in the range from 440 to 442. Check the tuner's calibration every time you use it, in case you have accidentally pressed the calibration button and it has gone higher or lower.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Probabilistic Topic Models
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Probabilistic Topic Models for Automatic Harmonic Analysis of Music A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Diane J. Hu Committee in charge: Professor Lawrence Saul, Chair Professor Serge Belongie Professor Shlomo Dubnov Professor Charles Elkan Professor Gert Lanckriet 2012 Copyright Diane J. Hu, 2012 All rights reserved. The dissertation of Diane J. Hu is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION To my mom and dad who inspired me to work hard.... and go to grad school. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . viii List of Tables . xii Acknowledgements . xiv Vita . xvi Abstract of the Dissertation . xvii Chapter 1 Introduction . 1 1.1 Music Information Retrieval . 1 1.1.1 Content-Based Music Analysis . 2 1.1.2 Music Descriptors . 3 1.2 Problem Overview . 5 1.2.1 Problem Definition . 5 1.2.2 Motivation . 5 1.2.3 Contributions . 7 1.3 Thesis Organization . 9 Chapter 2 Background & Previous Work . 10 2.1 Overview . 10 2.2 Musical Building Blocks . 10 2.2.1 Pitch and frequency . 11 2.2.2 Rhythm, tempo, and loudness . 17 2.2.3 Melody, harmony, and chords . 18 2.3 Tonality . 18 2.3.1 Theory of Tonality . 19 2.3.2 Tonality in music . 22 2.4 Tonality Induction . 25 2.4.1 Feature Extraction . 26 2.4.2 Tonal Models for Symbolic Input .
    [Show full text]