Factors Contributing to Development of Fatty Liver and Ketosis in Lactating Dairy Cows James Kent Drackley Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Factors Contributing to Development of Fatty Liver and Ketosis in Lactating Dairy Cows James Kent Drackley Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1989 Factors contributing to development of fatty liver and ketosis in lactating dairy cows James Kent Drackley Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Drackley, James Kent, "Factors contributing to development of fatty liver and ketosis in lactating dairy cows " (1989). Retrospective Theses and Dissertations. 8930. https://lib.dr.iastate.edu/rtd/8930 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 Nortti Zeeb Road, Ann Arbor, fvll 48106-1346 USA 313/761-4700 800/521-0600 • fc" Order Number 8920127 Factors contributing to development of fatty liver and ketosis in lactating dairy cows Drackley, James Kent, Ph.D. Iowa State University, 1989 U'M'I SOON.ZeebRd. Ann Arbor, MI 48106 Factors contributing to development of fatty liver and ketosis in lactating dairy cows by James Kent Drackley A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Animal Science Major: Nutritional Physiology Approved: Signature was redacted for privacy. Charg^ of Majo£ Work Signature was redacted for privacy. For the Major Department Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1989 ii TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE 4 Ketosis, Fatty Liver, and Fat Cow Syndrome 4 Lactation ketosis 4 Fatty liver 6 Fat cow syndrome 13 Experimental models of fatty liver and ketosis 14 Metabolism of Glucose and Lipids in the Liver of Dairy Cows 16 Gluconeogenesis 16 Precursors and pathways 17 Regulation 19 Fatty acid metabolism 21 General aspects 21 Oxidation of fatty acids 22 Esterification of fatty acids 26 Export of triglyceride from liver 27 Regulation of fatty acid metabolism in ruminants 29 Metabolism in Extrahepatic Tissues of Dairy Cows 34 Glucose 34 Lipids 35 Summary of the Literature 38 EXPLANATION OF DISSERTATION FORMAT 40 REFERENCES 41 SECTION I. EXPERIMENTAL FATTY LIVER AND KETOSIS ARE NOT INDUCED BY EITHER FEED RESTRICTION OR DIETARY 1,3-BUTANEDIOL AS SEPARATE TREATMENTS 57 ABSTRACT 58 INTRODUCTION 59 MATERIALS AND METHODS 61 Cows, Treatments, and Management 61 Sampling Procedures 64 Incubation Procedures 65 Analytical Methods 65 Statistical Analyses 68 ill RESULTS 70 General Health of Cows 70 Milk Production and Composition 70 Intake and Body Weight Change 73 Metabolites and Hormones in Plasma 75 Liver Composition 79 In Vitro Metabolism of Propionate 82 Effects of Nicotinic Acid, Carnitine, and 1,3-Butanediol 83 DISCUSSION 86 ACKNOWLEDGMENTS 93 REFERENCES 94 SECTION II. METABOLIC CHANGES IN LIVER AND BLOOD DURING AN INDUCED SUBCLINICAL KETOSIS IN DAIRY COWS DURING EARLY LACTATION 99 ABSTRACT 100 INTRODUCTION 101 MATERIALS AND METHODS 103 Treatments, Design of Experiment, and Management of Cows 103 Sampling Procedures 105 Incubation Procedures 106 Analytical Procedures 106 Presentation of Data 109 Statistical Analyses 109 RESULTS AND DISCUSSION 111 Milk Production and Composition 111 Intakes, Change in Body Weight, and Energy Balance 114 Metabolites and Hormones in Blood 117 Composition of Liver 127 In Vitro Hepatic Oxidation of Palmitate 130 Comparison with the Clinically Ketotic Cow 133 Ratio of Triglyceride to Glycogen in Liver 135 GENERAL DISCUSSION 138 ACKNOWLEDGMENTS 145 REFERENCES 146 iv GENERAL SUMMARY 150 REFERENCES 158 ACKNOWLEDGMENTS 159 APPENDIX 161 REFERENCES 164 V LIST OF TABLES Page SECTION ONE TABLE 1, Composition and analysis of silage and grain mixture fed to cows 62 TABLE 2. Milk production and composition from cows either feed-restricted (FR) or fed 1,3-butanediol (BD) during the separate-treatment period, or given both during the combination-treatment period 71 TABLE 3. Average daily intakes and body weight of cows either feed-restricted (FR) or fed 1,3-butanediol (BD) during weeks 1 through 4 or given both during weeks 5 and 6 74 TABLE 4. Concentrations of metabolites and hormones in plasma of cows either feed-restricted (FR) or fed 1,3-butanediol (BD) during the separate-treatment period, or given both during the combination- treatment period 76 TABLE 5. Composition of liver and metabolism of propionate by liver slices from cows either feed-restricted (FR) or fed 1,3-butanediol (BD) during the separate- treatment period, or given both during the combination-treatment period 80 TABLE 6. Effect of nicotinic acid, carnitine, or butanediol in incubation media on conversion of propionate to glucose or carbon dioxide by liver slices in vitro 85 SECTION TWO. TABLE 1. Composition and analysis of silage and grain mixture and alfalfa hay fed to cows 104 TABLE 2. Concentrations of metabolites in blood and liver and in vitro oxidation of palmitate in cow 463, who was induced into clinical ketosis by feed restriction plus dietary 1,3-butanediol (FRBD) 134 TABLE 3. Ratio of triglyceride to glycogen in liver biopsies from ketotic and nonketotic cows in the present and earlier experiments 136 vi APPENDIX TABLE Al. Analysis of variance for conversion of propionate to glucose by liver slices from cows in Section One 162 TABLE A2. Analysis of variance for milk production (kg/d) by cows in Section Two 163 vii LIST OF FIGURES Page SECTION ONE Figure 1. Schematic representation of dietary treatments 63 Figure 2. Concentrations of metabolites in plasma from cows either feed-restricted (FR) or fed butanediol (BD) during weeks 1 through 4, or given the combination during weeks 5 and 6 78 SECTION TWO Figure 1. Average daily production of milk, fat content, and production of solids-corrected milk (SCM) in control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 113 Figure 2. Average daily intake of dry matter (DM) as a percentage of body weight (BW), cumulative body weight change (week 0 as reference), and energy balance of control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 116 Figure 3. Concentrations of metabolites in plasma from control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 119 Figure 4. Concentrations of hormones in plasma from control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 122 Figure 5. Concentrations of total and dextran sulfate precipitable- (DSP) cholesterol and triglyceride in serum from control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 125 viii Figure 6. Composition of liver (percent of wet weight) from control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 129 Figure 7. Conversion of palmitate to carbon dioxide or total acid-soluble metabolites (ASM) by liver slices from control cows or cows subjected to feed restriction plus dietary butanediol (FRBD) during weeks 1 through 4 (days 14 to 42 postpartum) 132 1 INTRODUCTION High-producing dairy cows have a tremendous metabolic challenge during early lactation to provide adequate substrates for synthesis of large quantities of milk. Intake of energy-yielding nutrients from the diet usually is less than output into milk, resulting in mobilization of body tissue to supply the nutrient deficit. Most cows are able to adjust their metabolism to meet this challenge; some cows, however, are unable to make the necessary adjustments to maintain homeostasis. Metabolic diseases or disorders occur as a result. Lactation ketosis and fatty liver are two interrelated disorders of energy metabolism. Ketosis has been studied for over a half-century, but specific biochemical causes still are unknown. Estimates of the incidence of ketosis range from 2 to 15% (Baird, 1982; Littledike et al., 1981); subclinical ketosis may occur even more frequently.
Recommended publications
  • The Limited Role of Glucagon for Ketogenesis During Fasting Or in Response to SGLT2 Inhibition
    882 Diabetes Volume 69, May 2020 The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition Megan E. Capozzi,1 Reilly W. Coch,1,2 Jepchumba Koech,1 Inna I. Astapova,1,2 Jacob B. Wait,1 Sara E. Encisco,1 Jonathan D. Douros,1 Kimberly El,1 Brian Finan,3 Kyle W. Sloop,4 Mark A. Herman,1,2,5 David A. D’Alessio,1,2 and Jonathan E. Campbell1,2,5 Diabetes 2020;69:882–892 | https://doi.org/10.2337/db19-1216 Glucagon is classically described as a counterregula- the oxidation of fatty acids, a shift in fuel utilization that tory hormone that plays an essential role in the pro- coordinates energy needs and glucose production (2). The tection against hypoglycemia. In addition to its role in actions of glucagon to increase lipid oxidation, including the regulation of glucose metabolism, glucagon has the production of ketone bodies that is a downstream end been described to promote ketosis in the fasted state. point of this process, have been defined by numerous – Sodium glucose cotransporter 2 inhibitors (SGLT2i) are experiments with cultured hepatocytes (3–5). Moreover, a new class of glucose-lowering drugs that act primarily the classic studies of Gerich et al. (6), using somatostatin to in the kidney, but some reports have described direct reduce circulating glucagon and mitigate diabetic ketoaci- effects of SGLT2i on a-cells to stimulate glucagon se- dosis (DKA), add to the now ingrained belief that glucagon cretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone has both glucogenic and ketogenic activities.
    [Show full text]
  • Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows
    Review Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows Mariana Alves Caipira Lei 1 and João Simões 2,* 1 Department of Zootechnics, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; [email protected] 2 Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal * Correspondence: [email protected]; Tel.: +351-259-350-666 Abstract: This work reviews the current impact and manifestation of ketosis (hyperketonemia) in dairy cattle, emphasizing the practical use of laboratory methods, field tests, and milk data to monitoring this disease. Ketosis is a major issue in high-producing cows, easily reaching a prevalence of 20% during early postpartum when the negative energy balance is well established. Its economic losses, mainly related to decreasing milk yield, fertility, and treatment costs, have been estimated up to €250 per case of ketosis/year, which can double if associated diseases are considered. A deep relationship between subclinical or clinical ketosis and negative energy balance and related production diseases can be observed mainly in the first two months postpartum. Fourier transform infrared spectrometry methods gradually take place in laboratory routine to evaluates body ketones (e.g., beta-hydroxybutyrate) and probably will accurately substitute cowside blood and milk tests at a farm in avenir. Fat to protein ratio and urea in milk are largely evaluated each month in dairy farms indicating animals at risk of hyperketonemia. At preventive levels, other than periodical evaluation of body condition score and controlling modifiable or identifying non-modifiable risk Citation: Lei, M.A.C.; Simões, J.
    [Show full text]
  • Therapeutics of Corticosteroids in the Bovine Animal and Problems Surrounding Their Use W
    Therapeutics of Corticosteroids in the Bovine Animal and Problems Surrounding Their Use W. D. Black, D. V.M.· Department of Biomedical Sciences Ontario Veterinary College · University of Guelph Guelph, Ontario The corticosteroids have been used extensively in Anti- Gluco- Sodium veterinary practice for the last 15 to 20 years. They inflammatory corticoid Retaining have offered the practitioners of veterinary medicine Compound Potency Potency Potency a tool useful for blocking a portion of the pathological 1-Jydrocortisone 1.01 1.02 1.01 changes seen in infectious and metabolic disease. Un­ Prednisolone 4.01 5.52 0.81 Cortisone 0.81 0.82 0.81 fortunately they have done little to advance the cause Triamcinolone 5.01 ~25.03 0.01 of specific disease therapy. I shall discuss the use of Betamethasone 102 - 25.01 ~25.03 0.01 corticosteroids by veterinarians in some conditions in Dexamethasone 102 - 25.01 ~25.03 0.01 Flumethasone ~75 -1004 ~75 - 1004 0.0 which they are widely employed and attempt to Predef (Fluoro- clarify their usefulness in some cases and their abuse prednisolone) 14.02 50.02 in others. Figure 2. Relative Potencies of Corticosteroids. First let us consider what the pharmacological properties of these agents are and which ones are most likely to be of therapeutic value (Figure 1). The titioner should select one that does not cause sodium ability of these agents to reduce an elevated retention in order to avoid the problems of edema for­ mation and fluid build-up that can be harmful to the 0 temperature, to reduce inflammatory and allergic "'O animal.
    [Show full text]
  • Effects of Ketone Bodies on Brain Metabolism and Function In
    International Journal of Molecular Sciences Review Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases Nicole Jacqueline Jensen 1,* , Helena Zander Wodschow 1, Malin Nilsson 1 and Jørgen Rungby 1,2 1 Department of Endocrinology, Bispebjerg University Hospital, 2400 Copenhagen, Denmark; [email protected] (H.Z.W.); malin.sofi[email protected] (M.N.); [email protected] (J.R.) 2 Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark * Correspondence: [email protected] Received: 4 November 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions.
    [Show full text]
  • Gluconeogenesis and Bovine Ketosis
    October, 1968] NUTRITION REVIEWS 313 cattle at the time of slaughter showed no other two stations, but the differences effect of rearing practice on protein, iron, were insignificant. For some reason, the thiamine, riboflavin, or nicotinic acid vitamin A supplement added to the content. The fat content of this muscle concentrate was not very stable. As a increased with the higher level of con- result, vitamin A was low in the livers, centrates and restricted rearing area. With especially at two of the stations. However, Downloaded from https://academic.oup.com/nutritionreviews/article/26/10/313/1832143 by guest on 27 September 2021 this went a reduction in the moisture the method of rearing had no effect on content. The most outstanding observation this level. This was also true of the pro- was that the thiamine content of this mus- tein, iron, thiamine, riboflavin, niacin, cle of the animals at one station, at which pyridoxine, vitamin BIZ. and folic acid the most intensive feeding method was concentrations in the liver. studied, was almost twice that of the ani- Results of these studies indicate that mals at the other two stations. This was the method of rearing sheep and beef also true for the superficial digital flexer cattle has no significant effect on the muscle. There were, however, no such nutrient content of the same muscles or differences for any of the other nutrients studied. of the livers. There are inherent differences Livers from the animals at the station in the amounts of certain vitamins in dif- where the muscles had a high concentra- ferent muscles within the same animal tion of thiamine had slightly more thiamine and for the same muscle from different than livers of animals from either of the breeds.
    [Show full text]
  • Metabolic Switching Is Impaired by Aging and Facilitated by Ketosis
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.12.874297; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Metabolic switching is impaired by aging and facilitated by 2 ketosis independent of glycogen 3 Abbi R. Hernandez1, Leah M. Truckenbrod1, Quinten P. Federico1, Keila T. Campos1, Brianna 4 M. Moon1, Nedi Ferekides1, Meagan Hoppe1, Dominic D’Agostino3, 4, Sara N. Burke1, 2* 5 1Department of Neuroscience, University of Florida, Gainesville, FL, USA; 2Intitute on Aging, 6 University of Florida, Gainesville, FL, USA; 3Department of Molecular Pharmacology and 7 Physiology, University of South Florida, Tampa, FL, USA; 4Institute for Human and Machine 8 Cognition, Ocala, FL, USA 9 *Corresponding Author 10 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.12.874297; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 11 ABSTRACT 12 The ability to switch between glycolysis and ketosis promotes survival by enabling 13 metabolism through fat oxidation during periods of fasting. Carbohydrate restriction or stress can 14 also elicit metabolic switching. Keto-adapting from glycolysis is delayed in aged rats, but factors 15 mediating this age-related impairment have not been identified.
    [Show full text]
  • Medical and Therapeutic Applications of Ketosis
    Review Article iMedPub Journals Health Science Journal 2020 www.imedpub.com ISSN 1791-809X Vol. 14 No. 1: 690 DOI: 10.36648/1791-809X.14.1.690 Medical and Therapeutic Applications of Michael Paden Smith* Ketosis: An Overview F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, USA Abstract Ketosis is a metabolic state in which the body uses ketones as an alternative fuel *Corresponding author: source to glucose. When dietary carbohydrate intake is limited, the body turns Michael Paden Smith to ketones, produced initially by brief breakdown of muscles tissue and then by lipolysis of adipose tissue. Fasting is also a means of inducing a state of ketosis. [email protected] The ketogenic diet, a low-carbohydrate, high-fat diet, severely restricts carbohydrate intake and has been used to treat various health conditions, such F. Edward Hebert School of Medicine, as epilepsy, for over a century. Although the ketogenic diet is controversial, due Uniformed Services University of the Health to its strict dietary protocols, laboratory and clinical research suggest that there Sciences, USA. are many therapeutic benefits to be reaped through its implementation. Children with epilepsy have had their seizures reduced or completely controlled from Tel: 8088001789 maintaining a state of ketosis. Ketosis is also shown to help reduce tumor size in certain cancers. Additionally, certain types of athletic performance have been shown to be Citation: Smith MP (2020) Medical and enhanced through a low-carbohydrate, high-fat diet and body composition has Therapeutic Applications of Ketosis: An dramatically improved in clinical research of subjects on a ketogenic diet with Overview.
    [Show full text]
  • Ketosis (Acetonaemia) in Dairy Cattle Farms: Practical Guide Based on Importance, Diagnosis, Prevention and Treatments
    Journal of Dairy, Veterinary & Animal Research Reseach Article Open Access Ketosis (acetonaemia) in dairy cattle farms: practical guide based on importance, diagnosis, prevention and treatments Abstract Volume 7 Issue 6 - 2018 Ketosis is an important metabolic disease in dairy cattle which is occurring due to increase of ketone bodies (especially β-hydroxybutyrate) in blood. It is a lactation Samin Madreseh-Ghahfarokhi,1 Azam disorder usually associated with intense milk production and negative energy balance Dehghani-Samani,2 Amir Dehghani-Samani3 in dairy cattle. Ketosis most times is occurring at the most productive stage of the 1Department of Clinical Sciences, Faculty of Veterinary Medicine, lactation and makes great financial damages in milk production. In this practical Ferdowsi University of Mashhad, Mashhad, Iran review, incidence and prevalence, etiology, clinical aspects, biochemical findings, 2Faculty of Veterinary Medicine, Shahrekord University, diagnosis methods and prevention methods and treatments of ketosis in dairy cattle Shahrekord, Iran farms are briefly discussed. Prevalence rate of ketosis is closely related to diet and 3Department of Clinical Sciences, Faculty of Veterinary Medicine, farm management and also it is identified to be closely related to animal’s genetics. Shahrekord University, Shahrekord, Iran Concentration of serum β-hydroxybutyrate between 1,200-1,400μmol/L is usually threshold for definition of ketosis and clinical (wasting and nervous) and sub-clinical Correspondence: Amir Dehghani Samani, Department
    [Show full text]
  • The Effects of Fasting Or Ketogenic Diet on Endurance Exercise Performance and Metabolism in Female Mice
    H OH metabolites OH Article The Effects of Fasting or Ketogenic Diet on Endurance Exercise Performance and Metabolism in Female Mice Lola E. Holcomb, Caitlin C. O’Neill, Elizabeth A. DeWitt and Stephen C. Kolwicz, Jr. * Heart and Muscle Metabolism Laboratory, Department of Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA; [email protected] (L.E.H.); [email protected] (C.C.O.); [email protected] (E.A.D.) * Correspondence: [email protected] Abstract: The promotion of ketone body (KB) metabolism via ketosis has been suggested as a strategy to increase exercise performance. However, studies in humans and animals have yielded inconsistent results. The purpose of the current study was to examine the effects of ketosis, achieved via fasting or a short-term ketogenic diet (KD), on endurance exercise performance in female mice. After 8 h of fasting, serum KB significantly increased and serum glucose significantly decreased in fasted compared to fed mice. When subjected to an endurance exercise capacity (EEC) test on a motorized treadmill, both fed and fasted mice showed similar EEC performance. A 5-week KD (90% calories from fat) significantly increased serum KB but did not increase EEC times compared to chow-fed mice. KD mice gained significantly more weight than chow-fed mice and had greater adipose tissue mass. Biochemical tissue analysis showed that KD led to significant increases in triglyceride content in the heart and liver and significant decreases in glycogen content in the muscle and liver. Furthermore, KD downregulated genes involved in glucose and KB oxidation and upregulated genes involved in Citation: Holcomb, L.E.; O’Neill, lipid metabolism in the heart.
    [Show full text]
  • Glucose Kinetics and Hepatic Gluconeogenesis in Ketotic and Fasted Steers Robert Randall Lyle Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Glucose kinetics and hepatic gluconeogenesis in ketotic and fasted steers Robert Randall Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Lyle, Robert Randall, "Glucose kinetics and hepatic gluconeogenesis in ketotic and fasted steers " (1983). Retrospective Theses and Dissertations. 8418. https://lib.dr.iastate.edu/rtd/8418 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • The Chemistry of the Ketogenic Diet: Updates and Opportunities in Organic Synthesis
    International Journal of Molecular Sciences Review The Chemistry of the Ketogenic Diet: Updates and Opportunities in Organic Synthesis Michael Scott Williams * and Edward Turos * Department of Chemistry, University of South Florida, Tampa, FL 33620, USA * Correspondence: [email protected] (M.S.W.); [email protected] (E.T.) Abstract: The high-fat, low-carbohydrate (ketogenic) diet has grown in popularity in the last decade as a weight loss tool. Research into the diet’s effects on the body have revealed a variety of other health benefits. The use of exogenous ketone supplements to confer the benefits of the diet without strict adherence to it represents an exciting new area of focus. Synthetic ketogenic compounds are of particular interest that has received very little emphasis and is an untapped area of focus for chemical synthesis. In this review, we summarize the chemical basis for ketogenicity and opportunities for further advancement of the field. Keywords: ketogenic diet; ketosis; keto; epilepsy; exogenous ketone supplements; acetoacetate; β-hydroxybutyrate 1. Introduction The ketogenic diet, a high-fat, low-carbohydrate diet, has a long history of use begin- ning primarily as a treatment option for epilepsy [1,2]. However, it is only in the last few Citation: Williams, M.S.; Turos, E. decades that the diet has been popularized among the general public. Renewed clinical The Chemistry of the Ketogenic Diet: interest in the diet and its emerging popularity as a weight-loss tool have led to a larger Updates and Opportunities in scope of research into the diet’s effects on the body and the discovery of a broad range of Organic Synthesis.
    [Show full text]
  • The Therapeutic Implications of Ketone Bodies: the Effects of Ketone Bodies
    ARTICLE IN PRESS Prostaglandins, Leukotrienes and Essential Fatty Acids 70 (2004) 309–319 Review The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism Richard L. Veech* Laboratory of Membrane Biochemistry and Biophysics, National Institutes of Alcoholism and Alcohol Abuse, 12501 Washington Ave., Rockville, MD 20850, USA Received 10 August 2003; accepted 1 September 2003 Abstract The effects of ketone body metabolism suggests that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. These inferences follow directly from the metabolic effects of ketosis and the higher inherent energy present in d-b-hydroxybutyrate relative to pyruvate, the normal mitochondrial fuel produced by glycolysis leading to an increase in the DG0 of ATP hydrolysis. The large categories of disease for which ketones may have therapeutic effects are: (1) diseases of substrate insufficiency or insulin resistance, (2) diseases resulting from free radical damage, (3) disease resulting from hypoxia. Current ketogenic diets are all characterized by elevations of free fatty acids, which may lead to metabolic inefficiency by activation of the PPARsystem and its associated uncoupling mitochondrial uncoupling proteins. New diets comprised of ketone bodies themselves or their esters may obviate this present difficulty. Published by Elsevier Ltd. 1. Metabolic effects of ketone body metabolism that the effects of ketone metabolism in heart would mimic those in brain, which was not analyzed in this The therapeutic potentials of mild ketosis flow detailed manner for a number of technical reasons, most directly from a thorough understanding of their meta- prominently the inhomogeneous nature of the tissue and bolic effects, particularly upon mitochondrial redox its lack of quantifiable outputs.
    [Show full text]