Thomsonite, Mesolite, and Chabazite Prom Golden, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Thomsonite, Mesolite, and Chabazite Prom Golden, Colorado BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l . 11, PP. 461-474, PLS. 43-49 JUNE 30, 1900 THOMSONITE, MESOLITE, AND CHABAZITE PROM GOLDEN, COLORADO BY HORACE B. PATTON (jRead before the Society, December SO, 1899) CONTENTS Page Work of previous investigators.................................................................................. 461 Place and mode of occurrence................................ ................................................... 462 Thomsonite..................................................................................................................... 463 General description.............................................................................................. 463 Type 1....................................................................................................................... 464 Type I I ................................................................................................................... 466 Type 11a................................................................................................................... 466 Type III................................................................................................................ 467 Type Ilia .................................................................................................................. 467 Mesolite...........................................................................................................................468 Chemical analyses.......................................................................................................... 469 Chabazite...................................................................................................................... 470 Other zeoli tes.................................................................................................................. 472 Analcite..................................................... ............................................................. 472 Apophyllite.............................................................................................................. 472 Stilbite and laumontite.............................................................: .......................... 472 Calcite and aragonite............................................................................................. 473 Order of deposition..................................................................................................... 473 Summary......................................................................................................................... 473 W o r k o f P r e v io u s I nvestigators The zeolites of North and South Table mountains at Golden, Colorado, have already become known to mineralogists mainly through the ex­ cellent descriptions of these minerals and of their occurrence by Cross and Hillebrand in Bulletin 20 of the United States Gelogical Survey.* In this bulletin the above named authors t have given a brief description of ♦Contributions to the Mineralogy of the Rocky Mountains, Bull. no. 20, U. S. Geol. Survey, t A briefer, preliminary paper by the same authors was published in A.m. Jour. Sci., 3d ser., vol. xxiii, 1882, p. 452, and 3d ser., vol. xxiv, 1882, p. 129. LXVI—Bum.. Geoi.. Soc. Am., Vol. 11, 1899 (461) 462 H. B. PATTON— THOMSONITE, MESOLITE, AND CHABAZITE the Table mountains, with their basaltic caps and a much more detailed description of the various zeolitic minerals contained in the amygdaloidal cavities. They also discuss the results of the investigations of Professor Carl Klein on the optical anomalies of analcite and apophyllite from this locality* During the past two years the Colorado State School of Mines, located at Golden, has been conducting quarrying operations for the purpose of securing for its mineral cabinet specimens of these Table Mountain zeolites. A new locality opened up on the east faGe of North Table mountain proved to be very prolific of these zeolites and produced many specimens of ex­ treme beauty. In most respects the zeolites here developed correspond closely with the occurrences described in the above mentioned paper by Cross and Hillebrand, and it is hardly worth while to duplicate what they have already written on the subject. The minerals thomsonite and mesolite, however, not only show extraordinary beauty, but occur in a great variety of forms; habits, and associations, and in the case of the former also present features that do not entirely accord with the descriptions of Cross and Hillebrand. P l a c e a n d M o d e o f O c c u r r e n c e As the description of these zeolites and of the Table mountains in which they occur are so readily accessible to all, a very brief reference to the surroundings will suffice for our present purpose. At Golden are two socalled table mountains, designated North Table mountain and South Table mountain. Geologically they are but one mountain, con­ sisting of soft, nearly horizontal beds of Middle Tertiary age, capped with a thick lava sheet and cut in two by Clear creek. The soft bedded rocks that form the base of the mountain are almost entirely composed of fine andesite ash beds belonging to the Denver Tertiary.f The lava cap consists of two flows of feldspar-basalt that together reach a thick­ ness of about 100 feet at the place where the minerals under discussion were obtained. The second flow followed so closely upon the first that no erosion of the first sheet occurred before it was covered by the second sheet. The two flows are of about equal thickness and form a nearly vertical cliff of 100 feet, in the center of which is a horizontal band of very scoriaceous basalt that belongs mainly to the top of the lower flow. This porous band is some 15 feet thick and contains caCvities of all sizes up to 6 or 8 feet. The large cavities are drawn out flat in the direction ♦Neues Jahrbueh fur Mineralogie, etc., vol. i, 1884, p. 250. fSee Whitman Cross: Geology of the Denver basin, Monograph xxvii, U. S. Geol. Survey, p. 155. PLACE AND MODE OF OCCURRENCE 4 6 3 of flow; the smaller ones may be flattened oval in shape. Even in the weather-beaten face of the cliff the presence of white zeolitic minerals filling the cavities is very noticeable. At a depth of 2 or 3 feet they are usually quite fresh. Cross and Hillebrand divide the zeolites filling the amygdaloidal cav­ ities in the basalt of North and South Table mountains into two groups, based upon their method of occurrence. The minerals of the first group are laumontite and stilbite, and are to be found only on the floor of the cavities. On the floor of many of the cavities, especially of the larger ones, there is to be seen a very peculiar bedded deposit of yellowish or reddish yellow color, which closely resembles a friable sandstone, but which is shown to be composed of mixtures of these two minerals. Included in the minerals of the first group are also to be mentioned occasional minute, reddish spherules of thomsonite. These latter have not been observed by the writer in the newly opened locality ; but with this exception the minerals of the first group are quite in accordance with the descriptions given by Cross and Hillebrand and may be passed over without further comment. The second group is made to include all those that are not confined to the floor of the cavities. They occur on the roof and sides, as well as on the floor composed of zeolites of the first group, or they completely line cavities that do not contain these bedded floors. The minerals of this second group are thomsonite, stilbite, chabazite, analcite, apophyllite, and mesolite, to which maybe added calciteand aragonite, as both these minerals occur associated with the zeolites of the second group. T h o m s o n it e GENERAL DESCRIPTION It is universally recognized that specimens of any given species com­ ing from the same locality usually have the same habit and general appearance. This similarity affects crystal form and habit, color, luster, size, and association, and is so marked that mineralogists do not hesitate to identify localities by such peculiarities, such identification of localities usually being entirely justified by the facts. Exceptions to this rule will doubtless suggest themselves to the reader, but it is doubtful if a more striking one can be found than is shown by the mineral thomsonite in the particular locality under discussion. It would not be difficult to select four or more specimens of this mineral coming from immediately adjacent cavities so markedly different in habit and general appearance as to suggest their occurring in widely different localities. In fact, one 464 H. B. PATTON— THOMSONITE, MESOLITE, AND CHABAZITE may be justified in stating the contrast in still stronger terms, inasmuch as it is difficult to realize that the several specimens really represent the same mineral, irrespective of their common origin. This great diversity is undoubtedly due to the fact that the several varieties have been formed under varying conditions. It is, indeed, possible and easy to recognize several generations of thomsonite, each generation having its own habit. As a matter of fact, two such generations were recognized and described by Cross and Hillebrand. Their description of the first generation is very exact, and specimens of this type may easily be identified from such description. It is not so easy, however, to identify their second genera­ tion with any individuals of the later ones described in the following pages. Without the aid of photographs
Recommended publications
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    I`mt`qx1/00Lhmdq`knesgdLnmsg9Rbnkdbhsd This month’s mineral, scolecite, is an uncommon zeolite from India. Our write-up explains its origin as a secondary mineral in volcanic host rocks, the difficulty of collecting this fragile mineral, the unusual properties of the zeolite-group minerals, and why mineralogists recently revised the system of zeolite classification and nomenclature. OVERVIEW PHYSICAL PROPERTIES Chemistry: Ca(Al2Si3O10)A3H2O Hydrous Calcium Aluminum Silicate (Hydrous Calcium Aluminosilicate), usually containing some potassium and sodium. Class: Silicates Subclass: Tectosilicates Group: Zeolites Crystal System: Monoclinic Crystal Habits: Usually as radiating sprays or clusters of thin, acicular crystals or Hairlike fibers; crystals are often flattened with tetragonal cross sections, lengthwise striations, and slanted terminations; also massive and fibrous. Twinning common. Color: Usually colorless, white, gray; rarely brown, pink, or yellow. Luster: Vitreous to silky Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.16-2.40 (average 2.25) Figure 1. Scolecite. Luminescence: Often fluoresces yellow or brown in ultraviolet light. Refractive Index: 1.507-1.521 Distinctive Features and Tests: Best field-identification marks are acicular crystal habit; vitreous-to-silky luster; very low density; and association with other zeolite-group minerals, especially the closely- related minerals natrolite [Na2(Al2Si3O10)A2H2O] and mesolite [Na2Ca2(Al6Si9O30)A8H2O]. Laboratory tests are often needed to distinguish scolecite from other zeolite minerals. Dana Classification Number: 77.1.5.5 NAME The name “scolecite,” pronounced SKO-leh-site, is derived from the German Skolezit, which comes from the Greek sklx, meaning “worm,” an allusion to the tendency of its acicular crystals to curl when heated and dehydrated.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations Among Thomsonites Gonnardites, and Natrolites
    r-'1 ~ Q I ~ c lt') ~ r-'1 'JJ ~ Q.) < ~ ~ ......-~ ..,.;;j ~ <z 0 0 Q.) 1-4 rJ:J rJ:J N r-'1 ~ Q.) 0 ~ ..c ~ ~ ~ I r-'1 ~ > ~ 0 I ~ rJ:J 'JJ ..,.;;j Q.) < .....-~ 0 . 1-4 ~ C"-' 0 ~ ..,.;;j ~ 0 r-'1 00 C"-' Foster-STUDIES•. OF THE ZEOLITES-Geological Survey Professional Paper 504-D, E Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations among Thomsonites Gonnardites, and Natrolites By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 504-D, E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretory GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Foster, Margaret Dorothy, 1895- Studies of the zeolites. D. Composition of zeolites of the natrolite group. E. Compositional relations among thom­ sonites, gonnardites, and natrolites. Washington, U.S. Govt. Print. Off., 1965. v, 7; iii, 10 p. diagrs., tables. 30 em. (U.S. Geological Survey. Professional paper 504-D, E) Shorter contributions to general geology. Each part also has separate title page. Includes bibliographies. (Continued on next card) Foster, Margaret Dorothy, 1895- Studies of the zeolites. 1965. (Card 2) 1. Zeolites. I. Title. II. Title: Composition of zeolites of the natro­ lite group. III. Title: Compositional relations among thomsonites, gonnardites, and natrolites. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) Studies of the Zeolites Composition of Zeolites of the N atrolite Group By MARGARET D.
    [Show full text]
  • The Thermal Dehydration of Natural Zeolites
    549.67:536.4 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 74-9 (1974) THE THERMAL DEHYDRATION OF NATURAL ZEOLITES (with a summary in Dutch) L. P. VAN REEUWIJK Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands (Received 11-11-1974) H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1974 Ml Mededelingen Landbouwhogeschool Wageningen 74-9 (1974) (Communications Agricultural University) is also published as a thesis CONTENTS 1. INTRODUCTION 1 1.1. History 1 1.2. Genesis and occurrence of natural zeolites 2 1.3. Structural classification 4 1.4. Practical applications of zeolites 8 2. THE DEHYDRATION OF ZEOLITES - A CRITICAL REVIEW 11 2.1. Introduction 11 2.2. DTA and TG 12 2.3. High temperature X-ray analysis 13 2.4. Vapour pressure 14 2.5. The reaction mechanism 15 2.6. Rehydration 16 3. THE COMPLEXITY OF THE DEHYDRATION PROCESS 17 3.1. Types of dehydration 17 3.2. Examples 18 3.3. Effect of pressure on dehydration 22 3.3.1. Qualitative aspect 22 3.3.2. Quantitative aspect - Calibration of pressure 25 3.4. Dehydration equilibrium and hysteresis 26 3.5. Internal and external adsorption 28 4. DEHYDRATION OF ZEOLITES OF THE NATROLITE GROUP 30 4.1. Materials and procedures 30 4.2. Results and discussion 31 4.2.1. Natrolite 31 4.2.2. Mesolite 33 4.2.3. Scolecite 36 4.2.4. Thomsonite 37 4.2.5. Gonnardite 37 4.2.6. Edingtonite 38 4.3. Conclusions 39 5. PRESSURE-TEMPERATURE RELATIONS 40 5.1. The Clausius-Clapeyron equation 41 5.2. Experimental 43 5.3.
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bear- Ing Silicate Mineral Aerinite - Implications for the Molecular Structure
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Scholz, Ricardo, & Lopez Toro, Andres (2015) Infrared and Raman spectroscopic characterization of the carbonate bear- ing silicate mineral aerinite - Implications for the molecular structure. Journal of Molecular Structure, 1097, pp. 1-5. This file was downloaded from: https://eprints.qut.edu.au/84503/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.molstruc.2015.05.008 Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure Ray L.
    [Show full text]
  • Gonnardite Na2caal4si6o20 ² 7H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Tetragonal
    Gonnardite Na2CaAl4Si6O20 ² 7H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Tetragonal. Point Group: 42m: Fibrous crystals, at the centers of radiating spherulites, to 3 cm; massive. Physical Properties: Hardness = 5 D(meas.) = 2.25{2.36 D(calc.) = 2.33 Optical Properties: Translucent. Color: White, yellowish to salmon-red. Luster: Silky. Optical Class: Biaxial (+) or ({); commonly zoned. Orientation: X = c. ® = 1.497{1.508 ¯ = 1.498{1.510 ° = 1.499{1.513 2V(meas.) = 50± Cell Data: Space Group: I42d: a = 13.21(1) c = 6.622(4) Z = 2 X-ray Powder Pattern: Chaux de Bergonne, France; may be confused with natrolite and tetranatrolite. 2.92 (100), 5.93 (80), 6.70 (60), 4.44 (60), 4.74 (50), 3.23 (50), 3.12 (40) Chemistry: (1) (2) (3) SiO2 43.45 43.20 44.58 Al2O3 27.91 27.90 25.22 CaO 6.95 3.61 6.94 Na2O 8.69 13.16 7.66 H2O [13.00] 11.74 15.60 Total [100.00] 99.61 100.00 (1) Chaux de Bergonne, France; by electron microprobe, H2O by di®erence; corresponding to Na2:22Ca0:98Al4:32Si5:71O20 ² 5:70H2O: (2) Aci Trezza, Sicily, Italy; corresponds to Na3:5Ca0:5Al4:5 Si5:9O20:8 ² 5:35H2O: (3) Na2CaAl4Si6O20 ² 7H2O: Mineral Group: Zeolite group. Occurrence: In cavities in basalt, leucite tephrite, and altered skarn. Association: Zeolites, calcite. Distribution: Well characterized material from: in France, at Chaux de Bergonne, Gignat, Puy de D^ome. In Italy, from Capo di Bove, near Rome, Lazio; and at Aci Castello, Aci Trezza, Osilo, and other places on Sardinia.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Mineralogical Notes on Mesolite and Scolecite from Japan
    MINERALOGICAL JOURNAL, VOL . 5, No. 5, PP. 309-320, SEPT., 1968 MINERALOGICAL NOTES ON MESOLITE AND SCOLECITE FROM JAPAN KAZuo HARADA Section of Geology, Chichibu Museum of Natural History , Nagatoro 1417, Chichibu-gun, Saitama MAMORU HARA Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo and KAZUSO NAKAO Chemical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo ABSTRACT Occurrence of mesolites and scolecite was confirmed in veinlets or amyg dales in andesitic or basaltic rocks in Japan. The results of chemical, physical and X-ray studies of these minerals are described, with their mineral associ ations and modes of occurrences. Introduction Mesolite and scolecite are usually classified as common fibrous zeolites, but there has been no report on the occurrence of these zeolites in Japan though the thermal and chemical data of mesolite from Tezuka, Nagano, Japan, was given by Koizumi (1953). However, our routine examinations of fibrous zeolites in the National Science Museum, Tokyo, recently confirmed that mesolite and scolecite are not so rare in Japan as hitherto believed. This paper deals with the 310 Mineralogical Notes on Mesolite and Scolecite from Japan descriptions of scolecite and mesolites from Japan. a) Mesolite from Tezuka, Nishisioda-mura, Chiisagata-gun, Naga no, Japan (coll. by Takaharu Imayoshi). This mineral occurs as fibrous aggregates, sometimes associated with heulandite, in the vein lets (2-3cm wide) in andesitic tuff breccia. The DTA, TGA and chemical analysis of this specimen were provided by Koizumi (1953). b) Mesolite from Oshima, Otsuki City, Yamanashi, Japan (coll. by the writers). This mineral occurs as fibrous aggregates closely associated with stilbite in amygdales (1-2cm) of thoroughly altered olivine basalt.
    [Show full text]
  • 10Са9(Fе3+,Fе2+)
    Расцветаева Р. К., Пущаровский Д Ю., Виноградова Р. А. , Леков И. В. Кристаллическая структу- ра дашкесанита // Кристаллография. 1996. Т. 41. ](2 1. С. 65-69. Чуканов Н. В., Конилов А. Н., Задов А. Е., Белаковский Д и., Леков И. В. НОВЫЙ амфибол калие- вый хлоропаргасит и условия его формирования в гранулитовом комплексе Сальных тундр (Кольский полуостров) // ЗВМО. 2002. N~2. С. 58-61. Burke Е. А. J, Leake В. Е. «Named Amphiboles», а new category of amphiboles recognized Ьу the [гпег- national Mineralogical Association (lMA) and the ргорег order of prefixes to Ье used in amphibole names /1 Canad. Miner. 2004. Yol. 42. Р. 1881-1883. Jacobson S. S. Dashkesanite: high-chlorine amphibole from St. Paul's rock, Equatorial Atlantic and Transcaucasia, USSR 11 Smithson. Contrib. Earth Sci. 1975. Yol. 14. Р. 17-20. Leake В. Е. Nomenclature of amphiboles 11Amer. Мшег, 1978. Уоl. 63. Р. 1025-1052. Leake В. Е. е. а. Nomenclature ofamphiboles: Report ofthe subcommittee оп amphiboles ofthe Intemati- опа! Mineralogical Association, Commission оп New Minerals and Mineral Names 11Canad. Miner. 1997. Уоl. 35. Р. 219-246. Leake В. Е. е. а. Nomenclature of amphiboles: additions and revisions to the Intemational Mineralogical Association's amphibole nomenclature 11Canad. Miner. 2003. Yol. 41. Р. 1355-1362. Nickel Е. н., Mandarino J. А. Procedures involving the IMA Commission оп New Minerals and Mineral Names, and guidelines оп mineral nomenclature 11 Canad. Miner. 1987. Уо1. 25. Р. 353-377. Oberti R., Ungaretti L., СаnnШо Е., Hawthorne F. С. The mechanism of chlor incorporation in атпрпйю- lе 11Amer. Miner. 1993. Yol. 78.
    [Show full text]
  • Mnfooi Trsy C the THERMAL DEHYDRATION of NATURAL ZEOLITES
    MNfooi trSy C THE THERMAL DEHYDRATION OF NATURAL ZEOLITES BO L. P. VAN REEUWIJK MN0B201.587 L. P.VA N REEUWIJK THE THERMAL DEHYDRATION OF NATURAL ZEOLITES PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE LANDBOUWWETENSCHAPPEN, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. IR. H. A. LENIGER, HOOGLERAAR IN DE TECHNOLOGIE, IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 29 MEI 1974 DES NAMIDDAGS TE VIER UUR IN DE AULA VAN DE LANDBOUWHOGESCHOOL TE WAGENINGEN fBIBlIOTHEEK DER IANDBOUWHOGESCHOOL WAGENINGEN H.VEENMAN/& ZONEN B.V.- WAGENINGEN-1974 STELLINGEN Vanwegehu nuniek eeigenschappe n verdienen natuurlijke zeolietenmee r onder- zoek van huntoepassingsmogelijkhede n dan thans hetgeva lis . 2 Het bepalen van het z.g. H20- van zeolieten door het gewichtsverlies van monsters na verhitting tot 110°Ct e meten,zoal s voorgesteld door MARGARET FOSTER, is zinloos. FOSTER, M.D .(1965 ) U.S. Geol. Surv. Prof. Paper 504-D,E. 3 In tegenstelling tot de bewering van ZEN, hebben in zeolieten geadsorbeerde watermoleculen geen grotere entropie dandi e ind evloeibar e fase. ZEN, E-AN (1972) Amer. Miner. 57: 524. 4 Bij publicatie van differentieel thermische analyse (DTA) curves van reacties waarbij gassen zijn betrokken, dient van deze gassen de(partiele ) druk tewor - den vermeld, ook wanneer die gassen zijn samengesteld uit de lucht inhe t laboratorium end egasse n diebi jd ereacti e vrijkomen ofworde n opgenomen. MCADIE, H.G .(1967 ) Zeitschr. anal. Chem. 231: 35. 5 Bij hetgeve n vannieuw e namen aanminerale n dieslecht s in symmetric een weinig blijken af te wijken van eerder bekende mineralen, moet grote terug- houdendheid betracht worden.
    [Show full text]
  • Zeolites in Tasmania
    Mineral Resources Tasmania Tasmanian Geological Survey Record 1997/07 Tasmania Zeolites in Tasmania by R. S. Bottrill and J. L. Everard CONTENTS INTRODUCTION ……………………………………………………………………… 2 USES …………………………………………………………………………………… 2 ECONOMIC SIGNIFICANCE …………………………………………………………… 2 GEOLOGICAL OCCURRENCES ………………………………………………………… 2 TASMANIAN OCCURRENCES ………………………………………………………… 4 Devonian ………………………………………………………………………… 4 Permo-Triassic …………………………………………………………………… 4 Jurassic …………………………………………………………………………… 4 Cretaceous ………………………………………………………………………… 5 Tertiary …………………………………………………………………………… 5 EXPLORATION FOR ZEOLITES IN TASMANIA ………………………………………… 6 RESOURCE POTENTIAL ……………………………………………………………… 6 MINERAL OCCURRENCES …………………………………………………………… 7 Analcime (Analcite) NaAlSi2O6.H2O ……………………………………………… 7 Chabazite (Ca,Na2,K2)Al2Si4O12.6H2O …………………………………………… 7 Clinoptilolite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 7 Gismondine Ca2Al4Si4O16.9H2O …………………………………………………… 7 Gmelinite (Na2Ca)Al2Si4O12.6H2O7 ……………………………………………… 7 Gonnardite Na2CaAl5Si5O20.6H2O ………………………………………………… 10 Herschelite (Na,Ca,K)Al2Si4O12.6H2O……………………………………………… 10 Heulandite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 10 Laumontite CaAl2Si4O12.4H2O …………………………………………………… 10 Levyne (Ca2.5,Na)Al6Si12O36.6H2O ………………………………………………… 10 Mesolite Na2Ca2(Al6Si9O30).8H2O ………………………………………………… 10 Mordenite K2.8Na1.5Ca2(Al9Si39O96).29H2O ………………………………………… 10 Natrolite Na2(Al2Si3O10).2H2O …………………………………………………… 10 Phillipsite (Ca,Na,K)3Al3Si5O16.6H2O ……………………………………………… 11 Scolecite CaAl2Si3O10.3H20 ………………………………………………………
    [Show full text]