Composite Natrolite-Mesolite Crvstals from the Columbia

Total Page:16

File Type:pdf, Size:1020Kb

Composite Natrolite-Mesolite Crvstals from the Columbia 467 Canadinn Mineralogist Vol. 31, pp.467-470 (1993) COMPOSITENATROLITE-MESOLITE CRVSTALS FROM THECOLUMBIA RIVER BASALT GROUP, CI.ARKSTON, WASHINGTON MICKEYE. GTINTER Depamnentof Geologyand Geological Engineering, University of ldaho,Moscow, Idaha 83843, U.S.A. CHARLES R. KNOWLES Idaho StateGeological Survey, Universiry of ldaho, Moscow,Idaho 83M3, U.S.A. D. KATESCHALCK Deparxnentof Geology,Washington Snte University,Pullman, Washington99164, U.S.A. ABSTRAC"I Chemicalcomposition, optical properties,and X-ray-diffraction photographsconfirm the occurrenceof "single" crystalsof natrolitecapped by mesolitein cavitiesin the ColumbiaRiver BasaltGroup near Clarkston, Washington. The indicesof refraction forthe natrolitetip areo 1.4781(3),B 1.4814(3),and T 1.4895(3),with a measured2Vrof 62.9',andtheindex ofrefraction for the near-isotropicmesolite tip is 1.5055(3).Chemical analysis by electronmicroprobe shows the natroliteand mesolite portions to be neartheirideal compositions.Single-crystal X-ray diffraction showsatripling of , for the mesoliteportion of the compositecrystal. Calciumand sodium do not readilyexchange in natroliteand mesolite;thus, the formationof Ca-fteenatrolite at the beginningof growth and Ca-richmesolite at the end of growth indicatesa changein the environmentduring crystalgrowth. Keywords:natrolite, mesolite, physical properties, Columbia River BasaltGroup, Clarkston, Washinglon. SoNaNaarne lrs donn6eschimiques, les propri6t6soptiques, et les clich6sde diffraction X confirmentla pdsencede cristaux"uniques" de natrolite avec surcroissancede mdsolite dans les cavitds d'un basaltedu groupe de Columbia River, prbs de Clarkston,au Washington.l,es indicesde r6fractionde I'extr6mit6compos6e de natrolitesont: o 1.4781(3),B 1.4814(3),y 1.4895(3),2Vz= 62.9'.L'indice derdfraction pour I'extr6mit6 presque isotrope compos6e de natrolite est 1.5055(3).Des analyses d la microsonde 6lectroniquemontrent que natroliteet m6solitepossbdent une compositionpresque iddale. Une dtudepar diffraction X sur cristal unique ddmontreun riplage de b pour la portion du cristal compositefaite de mesolite.k calcium et le sodium ne sont pas facilement6changeables dans ces deux min6raux.la formation d'abord d'une natrolite sansC4 suivie d'une surcroissancede m6soliteriche en Ca"rdsulterait d'un changementdu milieu de croissance. (Iraduit par la R6daction) Mots-clds:natrolite, m6solitg propri6t6sphysiques, groupe de basaltesde ColumbiaRiver, Washingon. INTRoDUcnoN the courseof this study, we discoveredthat this is not the only reported occurrenceof intergrown natrolite- (1992)provided The zeolites used in this study were originally groupzeolites. Tschernich a reviewof collected for use in an optical mineralogy class. A the known occurrences.The structureofboth natrolite group crystal observedin cross-polarizedlight exhibits retar- and mesolitehave been refined in space FdA, (1984) dationand indicesofrefraction indicative ofnatrolite; respectivelyby Artioli et al. and,Artiob et al. however, one end of the crystal is nearly isotropic (1986). Chemically, natrolite [Na1u(AltuSi2aO66) .16H2Ol Grg. 1A). The index of refraction also is higher for differsfrom mesolite[Na16Ca16(Ala6Si72O240) the isotropic end, nearer to the accepted value .64H2Olby an orderedsubstitulion of 2 Na = Ca + H2O for mesolite.To confirm theseobservations, we col- (Gotlardi& Galli 1985),which causes a triplingof Dfor lected both chemical and X-rav-diffraction data. In mesolite. 468 THE CANADIAN MINERALOGIST Frc. 1. A. Thin-sectionphobgraph in cross-polarizedlight showingbirefringent natrolite terminated with near-isotropicmesolite tips. Chemicalanalyses were performed on the natroliteand mesoliteportions of both of thesecrystals and yieldednear-ideal end-memberchemical formulas (Table l ). B. Concentrationof Ca at the near-isotropic(mesolite) tip showingan abruptchange in Cacontent at the suturebetween natrolite and mesolite. Occunnnucn methodGloss 1981,Sv et aI. 1987).For the natrolite tip, the indicesare a 1.4781(3),F 1.481a(3)and t The faults and folds that disruptthe basaltsin the 1.4895(3).The mesolitetip is nearlyisotropic, and its vicinity of Lewiston,Idaho, define what is refenedto as singleindex ofrefraction is 1.5055(3). the Lewiston strucfire (Hooper et al. 1985). Thrs structurebrought the ImnahaBasalt, the oldestforma- CHEMIcALCoMPoslrIoN tion in ColumbiaRiver BasaltGroup, to the surfaceon the SnakeRiver approximatelyl0 kilometerswest of Chemicalcomposition (Table I ) wasdetermined with Clarkston,Washington (on the north sideof the river, at an ARL-EMX-SM electranmicroprobe operating at 15 river mile marker131). In the areaof thesestructural kV and 20 nA. The electronbeam was defocusedto disturbances.the ImnahaBasalt contains zeolites (na- approximately 20 pm. Amelia albite and synthetic trolite,mesolite, chabazite, and erionite), which occur in anorthitewere used as standards. All datawere corrected filled vesicles.No thoroughmineralogical study has for drift and deadtime, and Bence& Albee (1968) beendone in thisarea. The zeolite-containing amygdules matrix corrections were applied. Three spots were weatherout of the basaltand are easilycollected. The analyzedon eachof the natrolite and mesoliteportions singlecrystals of natrolitecapped by mesoliteoccur in the amygdules.The crystalsare approximately 50 pm in cross-sectionand 400 pm in length,with the first 350 TABLE 1. CIIEIIICAI, COMPOSITION OF NATROLITN-MESOLITE CRYSTALS SEOWN IN FICUBE 1A pm composedof natrolite,and the tip, approximately50 pm, composedof mesolite.The amygdules are approxi- large crystal s@ll clyatal mately20 mm in diameterwith 3 mm walls. mtrclits @lite FIEIItE @olite OPTTCAL PROPERTTES srq wt.g 47.8 48.4 49.0 \ot 25.3 21.4 24.9 24.1 CeO 0.0 9.5 0.0 9.6 The compositecrystals were first noticed with a N"zo 15.5 5.2 15.0 5.2 polarizingJightmicroscope. When viewed in cross-po- H2Ot 9.5 r2.4 9.5 12.4 larizedlight, the natrolitetip is birefringent(first-order auEber of @tlols bsed o! 80 (ed 240) atoru of oxyge! red to second-orderblue), and the mesolitetip seems sl 24.8 25.0(?5,0) 25.0 24.4 (73.2) near-isotropic.hecise optical data were collectedby 14.8 {44.4) 75.0 15.3(45.9) spindle-stagemethods (Bloss 1981).Extinction data 0.0 5.2 (15.8) o.o 5.5 (16.5) Na 5.2 (15.6) 14.9 5.4 (16.2) collectedfor thenatrolite tip of thecrystal yielded a2V, Hzo 16.0 21.3(64.0) 16.0 21.3(64.0) of 62.9(5)', as determinedby the computerprogram (B EXCALIBR loss1 98 1, Gunt er etal. 1988).Indices of I weight pereut Il2O @l@lateal frcE idel fomla (Ross et al. refractionwere determined usins the double-variation 1992) . COMPOSITENATROLITE-MESOLITE CRYSTALS 469 of the two crystalsshown in Figure lA: eachchemical minerals,Ca scansand back-scatteredelectron (BSE) compositionreported is the average. imageswere performed. The BSEimages and Ca scans were produced on a Cameca Camebax automated Cercuv SceNerqoBSE lMece electron-microprobeoperating at 15kV and20 nA using an 8-pm beam.The samesamples were usedfor the To verify further the chemicalvariation within these chemicalanalysis (Fig. 1A), Ca scans @ig. lB), andBSE A. natrolite so lite Frc. 2. A. Sketch showing lhe crystal orientation with respect to the incident X-ray beam, which is paralle,lto a, the precession axis. B. Diffraction pattern D*c* showing the (022) and (062) spots of natrolite. C. Diffraction pattnm b' c^ showing the (022) and (062) spots of mesolite, confirming its relationship to natrolite by a tripling of &. 470 TTIE CANADIAN MINERALOGIST images.Both showthe chemicalchanges occurring in image were provided by Scott Cornelius and Diane thesesamples. From Figure 1B, thereseems to be very Johnsonof The GeoAnalyticalLaboratory, Department little Ca in the natrolite,and the BSE imagesshow of Geology,Washinglon State University,Pullman, brighter areascorresponding to the higher atomicnum- Washington.MEG thankstheldaho Mining andMineral ber of mesolite. Resourcesand ResearchInstitute for partial supportof this project. X-Rey DFFnacnot REFERENcES As a structuralverification, precession X-ray-diffrac- tion photographswere obtainedon a compositecrystal ARnoLr,G., Snmr, J.V. & Kvrcr, A. 1tlA+;: Neurrondiffrac- mounted with c parallel to the dial axis and a as the tion studyof natrotte,Na2Al2 Si3O16.2H2O, at20K. Acta precessionaxis (Fig. 2A) in order to comparethe (O/cl) Cry stallo gr. C40, 1658-| 662. of the two parts.The natrolitetip of the crystalwas first placedin the X-ray beanr"followed by the mesolitetip. & PLUH, J.J. (1986): X-ray structurerefine- (The circles on the crystal drawing representthe ap- mentof mesolite.Acta Crystallogr.C42,937-942. proximate diameter of the X-ray beam). The results BsNcs, A.E. & Amr,s, A.L. (1968): Empirical confirm the optical and chemicaldata. Extra diffraction correction factorsforthe elecuonmicroanalysis of silicatesand oxides. spotsoccur in the mesolitephoto owing to the tripling J. Geo\.76,38243. ofits , axis.The position ofthe (022)natrolite reflection (Frg. 28) is occupiedby the (062) reflectionof mesolite Bloss, F.D. (1981): The Spinlle Sage: Principles and Prac- @ig. 2C), and a new reflectionfor (022) in mesolite rrce.Cambridge University Press,Cambridge, U.K. appearsat a smaller20 value(Fig. 2C). Go:rranor,G. & GALLI,E. (1985):NaturalTzolites. Springer- Suuveny Verlag, Berlin. Gu|[rER, Bloss, (1988): Natrolite and mesolite are easily distinguishedby M.E., F.D. & Su, Ssu-CHw EXCA- LIBR revisited.A m. M ineral.73, 1481-1482. their optical properties.Routine optical microscopyled to the discoveryof compositenatrolite-mesolite
Recommended publications
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    I`mt`qx1/00Lhmdq`knesgdLnmsg9Rbnkdbhsd This month’s mineral, scolecite, is an uncommon zeolite from India. Our write-up explains its origin as a secondary mineral in volcanic host rocks, the difficulty of collecting this fragile mineral, the unusual properties of the zeolite-group minerals, and why mineralogists recently revised the system of zeolite classification and nomenclature. OVERVIEW PHYSICAL PROPERTIES Chemistry: Ca(Al2Si3O10)A3H2O Hydrous Calcium Aluminum Silicate (Hydrous Calcium Aluminosilicate), usually containing some potassium and sodium. Class: Silicates Subclass: Tectosilicates Group: Zeolites Crystal System: Monoclinic Crystal Habits: Usually as radiating sprays or clusters of thin, acicular crystals or Hairlike fibers; crystals are often flattened with tetragonal cross sections, lengthwise striations, and slanted terminations; also massive and fibrous. Twinning common. Color: Usually colorless, white, gray; rarely brown, pink, or yellow. Luster: Vitreous to silky Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.16-2.40 (average 2.25) Figure 1. Scolecite. Luminescence: Often fluoresces yellow or brown in ultraviolet light. Refractive Index: 1.507-1.521 Distinctive Features and Tests: Best field-identification marks are acicular crystal habit; vitreous-to-silky luster; very low density; and association with other zeolite-group minerals, especially the closely- related minerals natrolite [Na2(Al2Si3O10)A2H2O] and mesolite [Na2Ca2(Al6Si9O30)A8H2O]. Laboratory tests are often needed to distinguish scolecite from other zeolite minerals. Dana Classification Number: 77.1.5.5 NAME The name “scolecite,” pronounced SKO-leh-site, is derived from the German Skolezit, which comes from the Greek sklx, meaning “worm,” an allusion to the tendency of its acicular crystals to curl when heated and dehydrated.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Key to Rocks & Minerals Collections
    STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium
    [Show full text]
  • Mineralogy and Geochemistry of Ocelli in the Damtjernite Dykes and Sills, Chadobets Uplift, Siberian Craton: Evidence of the Fluid–Lamprophyric Magma Interaction
    minerals Article Mineralogy and Geochemistry of Ocelli in the Damtjernite Dykes and Sills, Chadobets Uplift, Siberian Craton: Evidence of the Fluid–Lamprophyric Magma Interaction Anna A. Nosova 1,*, Ludmila V. Sazonova 1,2, Alexey V. Kargin 1 , Elena O. Dubinina 1 and Elena A. Minervina 1 1 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS), 119017 Moscow, Russia; [email protected] (L.V.S.); [email protected] (A.V.K.); [email protected] (E.O.D.); [email protected] (E.A.M.) 2 Geology Department, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.:+7-499-230-8414 Abstract: The study reports petrography, mineralogy and carbonate geochemistry and stable iso- topy of various types of ocelli (silicate-carbonate globules) observed in the lamprophyres from the Chadobets Uplift, southwestern Siberian craton. The Chadobets lamprophyres are related to the REE-bearing Chuktukon carbonatites. On the basis of their morphology, mineralogy and relation with the surrounding groundmass, we distinguish three types of ocelli: carbonate-silicate, containing carbonate, scapolite, sodalite, potassium feldspar, albite, apatite and minor quartz ocelli (K-Na-CSO); carbonate–silicate ocelli, containing natrolite and sodalite (Na-CSO); and silicate-carbonate, con- taining potassium feldspar and phlogopite (K-SCO). The K-Na-CSO present in the most evolved Citation: Nosova, A.A.; Sazonova, damtjernite with irregular and polygonal patches was distributed within the groundmass; the patches L.V.; Kargin, A.V.; Dubinina, E.O.; consist of minerals identical to minerals in ocelli. Carbonate in the K-Na-CSO are calcite, Fe-dolomite Minervina, E.A.
    [Show full text]
  • Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations Among Thomsonites Gonnardites, and Natrolites
    r-'1 ~ Q I ~ c lt') ~ r-'1 'JJ ~ Q.) < ~ ~ ......-~ ..,.;;j ~ <z 0 0 Q.) 1-4 rJ:J rJ:J N r-'1 ~ Q.) 0 ~ ..c ~ ~ ~ I r-'1 ~ > ~ 0 I ~ rJ:J 'JJ ..,.;;j Q.) < .....-~ 0 . 1-4 ~ C"-' 0 ~ ..,.;;j ~ 0 r-'1 00 C"-' Foster-STUDIES•. OF THE ZEOLITES-Geological Survey Professional Paper 504-D, E Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations among Thomsonites Gonnardites, and Natrolites By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 504-D, E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretory GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Foster, Margaret Dorothy, 1895- Studies of the zeolites. D. Composition of zeolites of the natrolite group. E. Compositional relations among thom­ sonites, gonnardites, and natrolites. Washington, U.S. Govt. Print. Off., 1965. v, 7; iii, 10 p. diagrs., tables. 30 em. (U.S. Geological Survey. Professional paper 504-D, E) Shorter contributions to general geology. Each part also has separate title page. Includes bibliographies. (Continued on next card) Foster, Margaret Dorothy, 1895- Studies of the zeolites. 1965. (Card 2) 1. Zeolites. I. Title. II. Title: Composition of zeolites of the natro­ lite group. III. Title: Compositional relations among thomsonites, gonnardites, and natrolites. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) Studies of the Zeolites Composition of Zeolites of the N atrolite Group By MARGARET D.
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bear- Ing Silicate Mineral Aerinite - Implications for the Molecular Structure
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Scholz, Ricardo, & Lopez Toro, Andres (2015) Infrared and Raman spectroscopic characterization of the carbonate bear- ing silicate mineral aerinite - Implications for the molecular structure. Journal of Molecular Structure, 1097, pp. 1-5. This file was downloaded from: https://eprints.qut.edu.au/84503/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.molstruc.2015.05.008 Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure Ray L.
    [Show full text]
  • Mineralogical Notes on Mesolite and Scolecite from Japan
    MINERALOGICAL JOURNAL, VOL . 5, No. 5, PP. 309-320, SEPT., 1968 MINERALOGICAL NOTES ON MESOLITE AND SCOLECITE FROM JAPAN KAZuo HARADA Section of Geology, Chichibu Museum of Natural History , Nagatoro 1417, Chichibu-gun, Saitama MAMORU HARA Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo and KAZUSO NAKAO Chemical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo ABSTRACT Occurrence of mesolites and scolecite was confirmed in veinlets or amyg dales in andesitic or basaltic rocks in Japan. The results of chemical, physical and X-ray studies of these minerals are described, with their mineral associ ations and modes of occurrences. Introduction Mesolite and scolecite are usually classified as common fibrous zeolites, but there has been no report on the occurrence of these zeolites in Japan though the thermal and chemical data of mesolite from Tezuka, Nagano, Japan, was given by Koizumi (1953). However, our routine examinations of fibrous zeolites in the National Science Museum, Tokyo, recently confirmed that mesolite and scolecite are not so rare in Japan as hitherto believed. This paper deals with the 310 Mineralogical Notes on Mesolite and Scolecite from Japan descriptions of scolecite and mesolites from Japan. a) Mesolite from Tezuka, Nishisioda-mura, Chiisagata-gun, Naga no, Japan (coll. by Takaharu Imayoshi). This mineral occurs as fibrous aggregates, sometimes associated with heulandite, in the vein lets (2-3cm wide) in andesitic tuff breccia. The DTA, TGA and chemical analysis of this specimen were provided by Koizumi (1953). b) Mesolite from Oshima, Otsuki City, Yamanashi, Japan (coll. by the writers). This mineral occurs as fibrous aggregates closely associated with stilbite in amygdales (1-2cm) of thoroughly altered olivine basalt.
    [Show full text]
  • Mnfooi Trsy C the THERMAL DEHYDRATION of NATURAL ZEOLITES
    MNfooi trSy C THE THERMAL DEHYDRATION OF NATURAL ZEOLITES BO L. P. VAN REEUWIJK MN0B201.587 L. P.VA N REEUWIJK THE THERMAL DEHYDRATION OF NATURAL ZEOLITES PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE LANDBOUWWETENSCHAPPEN, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. IR. H. A. LENIGER, HOOGLERAAR IN DE TECHNOLOGIE, IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 29 MEI 1974 DES NAMIDDAGS TE VIER UUR IN DE AULA VAN DE LANDBOUWHOGESCHOOL TE WAGENINGEN fBIBlIOTHEEK DER IANDBOUWHOGESCHOOL WAGENINGEN H.VEENMAN/& ZONEN B.V.- WAGENINGEN-1974 STELLINGEN Vanwegehu nuniek eeigenschappe n verdienen natuurlijke zeolietenmee r onder- zoek van huntoepassingsmogelijkhede n dan thans hetgeva lis . 2 Het bepalen van het z.g. H20- van zeolieten door het gewichtsverlies van monsters na verhitting tot 110°Ct e meten,zoal s voorgesteld door MARGARET FOSTER, is zinloos. FOSTER, M.D .(1965 ) U.S. Geol. Surv. Prof. Paper 504-D,E. 3 In tegenstelling tot de bewering van ZEN, hebben in zeolieten geadsorbeerde watermoleculen geen grotere entropie dandi e ind evloeibar e fase. ZEN, E-AN (1972) Amer. Miner. 57: 524. 4 Bij publicatie van differentieel thermische analyse (DTA) curves van reacties waarbij gassen zijn betrokken, dient van deze gassen de(partiele ) druk tewor - den vermeld, ook wanneer die gassen zijn samengesteld uit de lucht inhe t laboratorium end egasse n diebi jd ereacti e vrijkomen ofworde n opgenomen. MCADIE, H.G .(1967 ) Zeitschr. anal. Chem. 231: 35. 5 Bij hetgeve n vannieuw e namen aanminerale n dieslecht s in symmetric een weinig blijken af te wijken van eerder bekende mineralen, moet grote terug- houdendheid betracht worden.
    [Show full text]
  • Ferricerite-(La) (La, Ce, Ca)9Fe (Sio4)3(Sio3oh)4(OH)3
    3+ Ferricerite-(La) (La, Ce, Ca)9Fe (SiO4)3(SiO3OH)4(OH)3 Crystal Data: Hexagonal. Point Group: 3m. Forms boxwork-like aggregates of equant to tabular crystals flattened on [00*1] to 2 mm with dominant rhombohedral and pinacoidal faces, as pseudomorphs after an unidentified hexagonal prismatic mineral. Physical Properties: Cleavage: None. Tenacity: Brittle. Fracture: Conchoidal. Hardness = 5 D(meas.) = 4.7(1) D(calc.) = 4.74 Optical Properties: Translucent. Color: Light yellow to pinkish brown. Streak: White. Luster: Vitreous. Optical Class: Uniaxial (+). ω = 1.810(5) ε = 1.820(5) Cell Data: Space Group: R3c. a = 10.7493(6) c = 38.318(3) Z = 6 X-ray Powder Pattern: Mt. Yuksporr, Khibina massif, Kola Peninsula, Russia. 2.958 (100), 3.47 (40), 3.31(38), 2.833 (37), 2.689 (34), 1.949 (34), 3.53 (26) Chemistry: (1) (2) La2O3 37.57 CaO 5.09 Ce2O3 23.67 Fe2O3 1.40 Pr2O3 0.61 MgO 0.51 Nd2O3 1.48 SiO2 22.38 Sm2O3 0.10 P2O5 0.63 Gd2O3 0.24 H2O 3.20 SrO 1.97 Total 98.85 (1) Mt. Yuksporr, Khibina massif, Kola Peninsula, Russia; average electron microprobe analysis supplemented by IR spectroscopy, H2O by Penfield method; corresponds to (La4.23Ce2.65Ca1.37Sr0.35 Nd0.16Pr0.07Gd0.02Sm0.01)Σ=8.86(Fe0.32Ca0.30Mg0.23)Σ=0.85[SiO4]3[(Si0.84P0.16)Σ=1.00O3(OH)]4(OH)2.78. Mineral Group: Cerite supergroup, cerite group. Occurrence: A late-stage, low-temperature secondary phase in a symmetrically zoned, aegirine- natrolite-microcline vein in gneissose foyaite.
    [Show full text]
  • On the Occurrence of Aegirine-Augite in Natrolite Veins in the Dolerite from Nemuro, Hokkaidô
    Title On the Occurrence of Aegirine-Augite in Natrolite Veins in the Dolerite from Nemuro, Hokkaidô Author(s) Suzuki, Jun Citation Journal of the Faculty of Science, Hokkaido Imperial University. Ser. 4, Geology and mineralogy, 4(1-2), 183-191 Issue Date 1938 Doc URL http://hdl.handle.net/2115/35786 Type bulletin (article) File Information 4(1-2)_183-192.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP LeN rMs occwRwaNos os AncxRxNgptAwGg grE xN NA"wRozxma vmNs xN fg:ffE DoLwaEfscme waeM NwwvaO, moKKAXDO A By kxx SvzuKx With X .Pla・te anal 3 TextofZgu7'es Con£ributioR from the Department of Geology and Mineyalogy, Faculty of Scienee, ffokkaid6 Imperial Univevsity, No. I98. xNTRoDvcxnxoN In the Nemuro Peninsula, the eastern extreme of Hokkaid6, 'there is an exteiisive area of the SeRonian Fermation, whieh is geve- erally moRoclinai with a NEE tyend a]id a dip 15-- 200 to SSE. The 'forraation is leeally cut by innumerable sills and lav.as of doleritie rocl<s whieh vary in thickness from ten to tweRty meteys. Veyy pre£ty joints in platy or radial form are obsexved in.the roeks at eertain iocalities. The doleritie rocks have attracted the petrologist's attei3tion on aeeeunt o£ their eoBtaining analeime phenoerysts akct being penetrated by mimeyous zeolite veinlets. Aceording to Y. SAsA,(i) similar igneous rocl<s are extensively developed in Sikotan Is}aRd which is situated at the easterR extxemity of the frontal zone o£ the South Kurile Islands. [l]he present writer made a j'ourney with Y.
    [Show full text]
  • High Pressure Diffraction Studies of Gallosilicate Natrolite
    HHiigghh PPrreessssuurree DDiiffffrraaccttiioonn SSttuuddiieess ooff GGaalllloossiilliiccaattee NNaattrroolliittee:: AApppplliiccaattiioonnss ttoo PPrreessssuurree--IInndduucceedd CCaattiioonn TTrraappppiinngg.. By Gemma Louise Hill (née Little) A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy School of Chemistry University of Birmingham 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. 1st of 3 files Front pages and chapter 1 The remaining chapters are in two additional files Acknowledgements A very sincere thank you must go to my supervisor Dr Joseph A. Hriljac,a for his words of encouragement, academic support, patient teaching methods and always making himself available to help when needed. Many, many thanks. Thank you to the EPSRC for research funding and the University of Birmingham for the postgraduate research opportunity. Additional project sponsorship came from (BNFL) Nexia solutions, with project support from Dr Ewan Maddrelb and Dr Neil Hyatt.c For Beamline support during Synchrotron X-Ray and Neutron diffraction data collection, I would like to thank Dr William Marshall,d Dr Alistair Lennie,e Dr Richard Ibbersond and Dr YongJae Lee.f g Thanks to Prof.
    [Show full text]