A Guide to Clitoral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reference Sheet 1
MALE SEXUAL SYSTEM 8 7 8 OJ 7 .£l"00\.....• ;:; ::>0\~ <Il '"~IQ)I"->. ~cru::>s ~ 6 5 bladder penis prostate gland 4 scrotum seminal vesicle testicle urethra vas deferens FEMALE SEXUAL SYSTEM 2 1 8 " \ 5 ... - ... j 4 labia \ ""\ bladderFallopian"k. "'"f"";".'''¥'&.tube\'WIT / I cervixt r r' \ \ clitorisurethrauterus 7 \ ~~ ;~f4f~ ~:iJ 3 ovaryvagina / ~ 2 / \ \\"- 9 6 adapted from F.L.A.S.H. Reproductive System Reference Sheet 3: GLOSSARY Anus – The opening in the buttocks from which bowel movements come when a person goes to the bathroom. It is part of the digestive system; it gets rid of body wastes. Buttocks – The medical word for a person’s “bottom” or “rear end.” Cervix – The opening of the uterus into the vagina. Circumcision – An operation to remove the foreskin from the penis. Cowper’s Glands – Glands on either side of the urethra that make a discharge which lines the urethra when a man gets an erection, making it less acid-like to protect the sperm. Clitoris – The part of the female genitals that’s full of nerves and becomes erect. It has a glans and a shaft like the penis, but only its glans is on the out side of the body, and it’s much smaller. Discharge – Liquid. Urine and semen are kinds of discharge, but the word is usually used to describe either the normal wetness of the vagina or the abnormal wetness that may come from an infection in the penis or vagina. Duct – Tube, the fallopian tubes may be called oviducts, because they are the path for an ovum. -
Physiology of Female Sexual Function and Dysfunction
International Journal of Impotence Research (2005) 17, S44–S51 & 2005 Nature Publishing Group All rights reserved 0955-9930/05 $30.00 www.nature.com/ijir Physiology of female sexual function and dysfunction JR Berman1* 1Director Female Urology and Female Sexual Medicine, Rodeo Drive Women’s Health Center, Beverly Hills, California, USA Female sexual dysfunction is age-related, progressive, and highly prevalent, affecting 30–50% of American women. While there are emotional and relational elements to female sexual function and response, female sexual dysfunction can occur secondary to medical problems and have an organic basis. This paper addresses anatomy and physiology of normal female sexual function as well as the pathophysiology of female sexual dysfunction. Although the female sexual response is inherently difficult to evaluate in the clinical setting, a variety of instruments have been developed for assessing subjective measures of sexual arousal and function. Objective measurements used in conjunction with the subjective assessment help diagnose potential physiologic/organic abnormal- ities. Therapeutic options for the treatment of female sexual dysfunction, including hormonal, and pharmacological, are also addressed. International Journal of Impotence Research (2005) 17, S44–S51. doi:10.1038/sj.ijir.3901428 Keywords: female sexual dysfunction; anatomy; physiology; pathophysiology; evaluation; treatment Incidence of female sexual dysfunction updated the definitions and classifications based upon current research and clinical practice. -
Sexual Reproduction & the Reproductive System Visual
Biology 202: Sexual Reproduction & the Reproductive System 1) Label the diagram below. Some terms may be used more than once. Spermatozoa (N) Mitosis Spermatogonium (2N) Spermatids (N) Primary Oocyte (2N) Polar bodies (N) Ootid (N) Second polar body (N) Meiosis I Primary spermatocyte (2N) Oogonium (2N) Secondary oocyte (2N) Ovum (N) Secondary spermatocytes (2N) First polar body Meiosis II Source Lesson: Gametogenesis & Meiosis: Process & Differences 2) Label the diagram of the male reproductive system below. Seminal vesicle Testis Scrotum Pubic bone Penis Prostate gland Urethra Epididymis Vas deferens Bladder Source Lesson: Male Reproductive System: Structures, Functions & Regulation 3) Label the image below. Rectum Testis Ureter Bulbourethral gland Urethra Urinary bladder Pubic bone Penis Seminal vesicle Ductus deferens Epididymis Prostate gland Anus Source Lesson: Semen: Composition & Production 4) Label the structures below. Inner and outer lips of the vagina Mons pubis Vaginal opening Clitoris Anus Urethral opening Perineum Vulva Source Lesson: Female Reproductive System: Structures & Functions 5) Label the diagram below. Some terms may be used more than once. Clitoris Vulva Labia majora Labia minora Perineum Clitoral hood Vaginal opening Source Lesson: Female Reproductive System: Structures & Functions 6) Label the internal organs that make up the female reproductive system. Uterus Fallopian tubes Ovaries Cervix Vagina Endometrium Source Lesson: Female Reproductive System: Structures & Functions 7) Label the diagram below. LH Follicular -
Chapter 28 *Lecture Powepoint
Chapter 28 *Lecture PowePoint The Female Reproductive System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The female reproductive system is more complex than the male system because it serves more purposes – Produces and delivers gametes – Provides nutrition and safe harbor for fetal development – Gives birth – Nourishes infant • Female system is more cyclic, and the hormones are secreted in a more complex sequence than the relatively steady secretion in the male 28-2 Sexual Differentiation • The two sexes indistinguishable for first 8 to 10 weeks of development • Female reproductive tract develops from the paramesonephric ducts – Not because of the positive action of any hormone – Because of the absence of testosterone and müllerian-inhibiting factor (MIF) 28-3 Reproductive Anatomy • Expected Learning Outcomes – Describe the structure of the ovary – Trace the female reproductive tract and describe the gross anatomy and histology of each organ – Identify the ligaments that support the female reproductive organs – Describe the blood supply to the female reproductive tract – Identify the external genitalia of the female – Describe the structure of the nonlactating breast 28-4 Sexual Differentiation • Without testosterone: – Causes mesonephric ducts to degenerate – Genital tubercle becomes the glans clitoris – Urogenital folds become the labia minora – Labioscrotal folds -
A Handy Guide to the Male and Female Reproductive Tracts
BASICS OF LIFE BY LES SELLNOW eproduction in all species borders on the miraculous. at the reproductive organs of both the mare and the stallion How else can one describe a process where two infini- and discuss just how they function in their effort to produce Rtesimal entities, one from the male, the other from the another “miracle.” Once again, sources are too numerous to female, join forces to produce living, breathing offspring? mention, other than to say that much of the basic informa- Reproductive capability or success varies by species. Mice tion on reproduction available today stems from research at and rabbits, for example, are prolific producers of offspring. such institutions as Colorado State University, Texas A&M Horses, on the other hand, fall into a category where it is University, and the University of Minnesota. There are many much more chancy. others involved in reproductive research, but much of the in- When horses ran wild, this wasn’t a serious problem. There formation utilized in this article emanated from those three were so many of them that their numbers continued to ex- institutions. pand even though birth rate often was dictated by the avail- ability of food and water. Once the horse was domesticated, The Mare however, organized reproduction became the order of the We’ll begin with the mare because her role in the repro- day. Stables that depend on selling the offspring of stallions ductive process is more complicated than that of the stallion. and mares have an economic stake in breeding success. Yet, Basically, the mare serves four functions: the process continues to be less than perfect, with success 1) She produces eggs or ova; rates hovering in the 65-70% range, and sometimes lower. -
Why Feelings Stray: Sources of Affective Misforecasting in Consumer Behavior Vanessa M
Why Feelings Stray: Sources of Affective Misforecasting in Consumer Behavior Vanessa M. Patrick, University of Georgia Deborah J. MacInnis, University of Southern California ABSTRACT drivers of AMF has considerable import for consumer behavior, Affective misforecasting (AMF) is defined as the gap between particularly in the area of consumer satisfaction, brand loyalty and predicted and experienced affect. Based on prior research that positive word-of-mouth. examines AMF, the current study uses qualitative and quantitative Figure 1 depicts the process by which affective misforecasting data to examine the sources of AMF (i.e., why it occurs) in the occurs (for greater detail see MacInnis, Patrick and Park 2005). As consumption domain. The authors find evidence supporting some Figure 1 suggests, affective forecasts are based on a representation sources of AMF identified in the psychology literature, develop a of a future event and an assessment of the possible affective fuller understanding of others, and, find evidence for novel sources reactions to this event. AMF occurs when experienced affect of AMF not previously explored. Importantly, they find consider- deviates from the forecasted affect on one or more of the following able differences in the sources of AMF depending on whether dimensions: valence, intensity and duration. feelings are worse than or better than forecast. Since forecasts can be made regarding the valence of the feelings, the specific emotions expected to be experienced, the INTRODUCTION intensity of feelings or the duration of a projected affective re- Before purchase: “I can’t wait to use this all the time, it is sponse, consequently affective misforecasting can occur along any going to be so much fun, I’m going to go out with my buddies of these dimensions. -
Classification of Human Emotions from Electroencephalogram (EEG) Signal Using Deep Neural Network
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 9, 2017 Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network Abeer Al-Nafjan Areej Al-Wabil College of Computer and Information Sciences Center for Complex Engineering Systems Imam Muhammad bin Saud University King Abdulaziz City for Science and Technology Riyadh, Saudi Arabia Riyadh, Saudi Arabia Manar Hosny Yousef Al-Ohali College of Computer and Information Sciences College of Computer and Information Sciences King Saud University King Saud University Riyadh, Saudi Arabia Riyadh, Saudi Arabia Abstract—Estimation of human emotions from [1]. Recognizing a user‘s affective state can be used to Electroencephalogram (EEG) signals plays a vital role in optimize training and enhancement of the BCI operations [2]. developing robust Brain-Computer Interface (BCI) systems. In our research, we used Deep Neural Network (DNN) to address EEG is often used in BCI research experimentation because EEG-based emotion recognition. This was motivated by the the process is non-invasive to the research subject and minimal recent advances in accuracy and efficiency from applying deep risk is involved. The devices‘ usability, reliability, cost- learning techniques in pattern recognition and classification effectiveness, and the relative convenience of conducting applications. We adapted DNN to identify human emotions of a studies and recruiting participants due to their portability have given EEG signal (DEAP dataset) from power spectral density been cited as factors influencing the increased adoption of this (PSD) and frontal asymmetry features. The proposed approach is method in applied research contexts [3], [4]. These advantages compared to state-of-the-art emotion detection systems on the are often accompanied by challenges such as low spatial same dataset. -
The Cyclist's Vulva
The Cyclist’s Vulva Dr. Chimsom T. Oleka, MD FACOG Board Certified OBGYN Fellowship Trained Pediatric and Adolescent Gynecologist National Medical Network –USOPC Houston, TX DEPARTMENT NAME DISCLOSURES None [email protected] DEPARTMENT NAME PRONOUNS The use of “female” and “woman” in this talk, as well as in the highlighted studies refer to cis gender females with vulvas DEPARTMENT NAME GOALS To highlight an issue To discuss why this issue matters To inspire future research and exploration To normalize the conversation DEPARTMENT NAME The consensus is that when you first start cycling on your good‐as‐new, unbruised foof, it is going to hurt. After a “breaking‐in” period, the pain‐to‐numbness ratio becomes favourable. As long as you protect against infection, wear padded shorts with a generous layer of chamois cream, no underwear and make regular offerings to the ingrown hair goddess, things are manageable. This is wrong. Hannah Dines British T2 trike rider who competed at the 2016 Summer Paralympics DEPARTMENT NAME MY INTRODUCTION TO CYCLING Childhood Adolescence Adult Life DEPARTMENT NAME THE CYCLIST’S VULVA The Issue Vulva Anatomy Vulva Trauma Prevention DEPARTMENT NAME CYCLING HAS POSITIVE BENEFITS Popular Means of Exercise Has gained popularity among Ideal nonimpact women in the past aerobic exercise decade Increases Lowers all cause cardiorespiratory mortality risks fitness DEPARTMENT NAME Hermans TJN, Wijn RPWF, Winkens B, et al. Urogenital and Sexual complaints in female club cyclists‐a cross‐sectional study. J Sex Med 2016 CYCLING ALSO PREDISPOSES TO VULVAR TRAUMA • Significant decreases in pudendal nerve sensory function in women cyclists • Similar to men, women cyclists suffer from compression injuries that compromise normal function of the main neurovascular bundle of the vulva • Buller et al. -
What We Mean When We Talk About Suffering—And Why Eric Cassell Should Not Have the Last Word
What We Mean When We Talk About Suffering—and Why Eric Cassell Should Not Have the Last Word Tyler Tate, Robert Pearlman Perspectives in Biology and Medicine, Volume 62, Number 1, Winter 2019, pp. 95-110 (Article) Published by Johns Hopkins University Press For additional information about this article https://muse.jhu.edu/article/722412 Access provided at 26 Apr 2019 00:52 GMT from University of Washington @ Seattle What We Mean When We Talk About Suffering—and Why Eric Cassell Should Not Have the Last Word Tyler Tate* and Robert Pearlman† ABSTRACT This paper analyzes the phenomenon of suffering and its relation- ship to medical practice by focusing on the paradigmatic work of Eric Cassell. First, it explains Cassell’s influential model of suffering. Second, it surveys various critiques of Cassell. Next it outlines the authors’ concerns with Cassell’s model: it is aggressive, obscure, and fails to capture important features of the suffering experience. Finally, the authors propose a conceptual framework to help clarify the distinctive nature of sub- jective patient suffering. This framework contains two necessary conditions: (1) a loss of a person’s sense of self, and (2) a negative affective experience. The authors suggest how this framework can be used in the medical encounter to promote clinician-patient communication and the relief of suffering. *Center for Ethics in Health Care and School of Medicine, Oregon Health and Science University, Portland. †National Center for Ethics in Health Care, Washington, DC, and School of Medicine, University of Washington, Seattle. Correspondence: Tyler Tate, Oregon Health and Science University, School of Medicine, Depart- ment of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098. -
Masturbation Among Women: Associated Factors and Sexual Response in a Portuguese Community Sample
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório do ISPA Journal of Sex & Marital Therapy Masturbation Among Women: Associated Factors and Sexual Response in a Portuguese Community Sample DOI:10.1080/0092623X.2011.628440 Ana Carvalheira PhDa & Isabel Leal PhDa Accepted author version posted online: 14 Feb 2012 http://www.tandfonline.com/doi/full/10.1080/0092623X.2011.628440 Abstract Masturbation is a common sexual practice with significant variations in reported incidence between men and women. The goal of this study was to explore the (1) age at initiation and frequency of masturbation, (2) associations of masturbation with diverse variables, (3) reported reasons for masturbating and associated emotions, and (4) the relationship between frequency of masturbation and different sexual behavioral factors. A total of 3,687 women completed a web-based survey of previously pilot-tested items. The results reveal a high reported incidence of masturbation practices amongst this convenience sample of women. Ninety one percent of women, in this sample, indicated that they had masturbated at some point in their lives with 29.3% reporting having masturbated within the previous month. Masturbation behavior appears to be related to a greater sexual repertoire, more sexual fantasies, and greater reported ease in reaching sexual arousal and orgasm. Women reported a diversity of reasons for masturbation, as well as a variety of direct and indirect techniques. A minority of women reported feeling shame and guilt associated with masturbation. Early masturbation experience might be beneficial to sexual arousal and orgasm in adulthood. Further, this study demonstrates that masturbation is a positive component in the structuring of female sexuality. -
A Manual on Navigating Child Masturbation Without Shame
City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects CUNY Graduate Center 2-2021 Is This My Body? A Manual on Navigating Child Masturbation Without Shame Stephanie M. Amis The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/4179 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] IS THIS MY BODY? A MANUAL ON NAVIGATING CHILD MASTURBATION WITHOUT SHAME by STEPHANIE AMIS A master’s capstone submitted to the Graduate Faculty in Liberal Studies in partial fulfillment of the requirements for the degree of Master of Arts, The City University of New York 2021 i © 2021 STEPHANIE AMIS All Rights Reserved ii Is This My Body? A Manual on Navigating Child Masturbation without Shame by Stephanie Amis This manuscript has been read and accepted for the Graduate Faculty in Liberal Studies in satisfaction of the capstone project requirement for the degree of Master of Arts. Date: 1/14/21 Carrie Hintz Capstone Project Advisor Date: 1/14/21 Elizabeth Macaulay-Lewis Executive Officer THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Is This My Body? A Manual on Navigating Child Masturbation without Shame by Stephanie Amis Advisor: Carrie Hintz Children’s natural exploration of their bodies and sexual expression through masturbation is often considered to be taboo by many adults and caregivers. It is important that children are taught that they have the right to explore their own bodies, to express and experience any sexual developments that may be happening. -
Comparative Morphology of the Penis and Clitoris in Four Species of Moles
RESEARCH ARTICLE Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae) ADRIANE WATKINS SINCLAIR1∗, STEPHEN GLICKMAN2, KENNETH CATANIA3, AKIO SHINOHARA4, LAWRENCE BASKIN1, 1 AND GERALD R. CUNHA 1Department of Urology, University of California San Francisco, San Francisco, California 2Departments of Psychology and Integrative Biology, University of California, Berkeley, California 3Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 4Frontier Science Research Center, University of Miyazaki, Kihara, Japan ABSTRACT The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy- tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature mascu- line trait score that included perineal appendage length (prepuce), anogenital distance, and pres- ence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes.