Parameters Influencing Cocrystallization and Polymorphism in Milk Fat 899

Total Page:16

File Type:pdf, Size:1020Kb

Parameters Influencing Cocrystallization and Polymorphism in Milk Fat 899 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Parameters Influencing Cocrystallization and Polymorphism in Milk Fat Birgit Breitschuh and Erich J. Windhab* Institute of Food Engineering, Department of Food Science, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland ABSTRACT: Dry fractionation of milk fat is a common tech- spans from about −40 to 40°C. Furthermore, the composition nique used to produce fat fractions with physical properties that changes with season, region, and feeding (4). These physical are suitable for a variety of food and pharmaceutical products. properties and variations restrict the use of milk fat in food During milk fat fractionation, the partial crystallization of tria- and pharmaceutical or cosmetic products. To overcome these cylglycerols from the melt is the most important step. The effi- limitations, fractionation is performed (5). The techniques ciency of the separation of the crystals from the suspension is used for fractionation are varied. They are reviewed by also important, but the crystallization itself influences the chem- Kreulen (6), Deffense (7), and Hamm (8). The most common ical composition and thereby determines the properties of the crystal fraction. At low supercooling, the crystallization kinetics dry fractionation is the separation of triacylglycerols on the are slow, and thus process time is increased. With increased ki- basis of their melting ranges. A single-step fractionation netics due to a strong supersaturation, the chemical composi- yields a hard and a soft fraction, which are called stearin and tion of the crystals is changed compared to crystals formed olein, respectively. under slow kinetic conditions. This study shows to what extent Dry fractionation consists of two steps, a partial crystal- controlled temperature and supercooling during milk fat crys- lization of triacylglycerols from a melt and a subsequent sep- tallization influence crystal amount and the physical properties aration. The resulting differences in the fractions depend on of the resulting fractions. Differences of the thermal characteris- the process characteristics and parameter settings. The effi- tics of the crystal suspensions are directly detected by differen- ciency of separation of the liquid (olein) from the crystalline tial scanning calorimetry and nuclear magnetic resonance. At phase (stearin) influences the quality of the solid fraction to a slow crystallization kinetics, the melting temperature range of great extent. The more liquid is removed, the greater are the the crystals in the suspensions is broader, and the resolution of the melting peak is higher. It is shown that compound crystals differences in the solid fraction, compared to the original milk are formed when supercooling is performed, even if the super- fat (7,9). The crystallization step has a greater influence on cooling takes place only for a short period of time. Controlled the chemical composition of the pure fractions. temperature conditions during crystallization govern larger dif- Crystallization in general can be divided into two charac- ferences in the fatty acid and triacylglycerol composition of the teristic process steps: nucleation and growth. To crystallize a liquid and of the crystalline phases, compared to fractions crys- fat compound, supersaturation or supercooling is necessary. tallized under supercooling conditions, which contain a high This is the driving force for both crystallization steps (10). amount of compound crystals. For fat systems, crystallization is complex because natural JAOCS 75, 897–904 (1998). fats are a mixture of various triacylglycerols. Consequently, the concentration of each triacylglycerol is low and, for ex- KEY WORDS: Compound crystals, crystallization, differential ample, increased supercooling is needed to achieve nucle- scanning calorimetry, fractionation, milk fat, mixed crystals, nu- clear magnetic resonance, polymorphism, process control, tri- ation of this low concentrated species. acylglycerol composition. Furthermore, triacylglycerols are characterized by a com- plex melting behavior. They can solidify in three different crystal structures (α, β′, β) (polymorphism). Different crystal grid structures result depending on the magnitude of the Milk fat has a heterogeneous nature. It contains a large vari- driving force of crystallization. Less stable modifications re- ety of fatty acids with different chainlengths. So far, over 400 quire a lower driving force. The different polymorphic modi- different fatty acids have been identified in milk fat (1–3). fications have different thermodynamic stability, and the The triacylglycerol composition is even more complex be- metastable polymorphic modifications (α, β′) are transformed cause the theoretical number of possible combinations of with time to the stable β form. these fatty acids in triacylglycerols is 4003. Due to its com- In a multicomponent fat, such as milk fat, compound crys- plex composition, the melting range of milk fat is broad and tals can easily be formed due to the low supersaturation of *To whom correspondence should be addressed. one triacylglycerol (11). Compound or mixed crystals are E-mail: [email protected] composed of different molecular species, favored by similar Copyright © 1998 by AOCS Press 897 JAOCS, Vol. 75, no. 8 (1998) 898 B. BREITSCHUH AND E.J. WINDHAB chainlength of the fatty acids (12). Preferably, they form suspensions (created in the rheometer) were filtered 15 min at metastable modifications because the crystal lattice is not 1.5 bar, and the filter medium used was Nybolt PA 1/1/C very dense. Compound crystals cause a narrow melting range (Sefar Inc., Heiden, Switzerland) with a pore size of 1 µm. and a higher crystal fraction (13); furthermore, unstable poly- Calorimetric measurements. The calorimeter used was morphic forms (α, β′) may persist almost indefinitely. a DSC Gold+ (Rheometric Scientific GmbH, Bensheim, Due to its complex composition, the crystallization of tria- Germany) with an accuracy of 1 µW. Gallium [h = 18.95 cal/g, cylglycerols in milk fat and milk fat fractions is not well T (melting) = 29.765°C] was used for temperature and en- known (14). If the temperature is gradually decreased, suc- thalpy calibration, and the instrument was calibrated at cessive crystallization of triacylglycerols occurs. The param- 10°C/min. Aluminum pans were used, and the sample weight eters that influence crystallization and the properties of the was about 1–5 mg. One drop of a crystal suspension was in- final fractions consist of the degree of supercooling, tempera- serted into an empty pan and immediately (within seconds) ture, and residence time. measured at a constant heating rate of 10°C/min, registering The aim of this study is to determine the effect of crystal- the heating curve. As a reference, an empty pan was measured lization temperature and supercooling on the physical and at the same time. For analysis of the heat of fusion, the area chemical characteristics of the resulting milk fat fractions. between the heat flow curve and the extrapolated baseline was The investigations are based on direct measurements of the determined. The cooling was performed by using liquid nitro- calorimetric properties of a crystal suspension, thus detecting gen as refrigerant. Further details are provided elsewhere (16). crystal temperature memory as well as the crystal amount in Nuclear magnetic resonance. The instrument used in these a suspension. investigations was a Minispec NMS 120 (Spectrospin, Bruker Analytical and Medical Instruments, Fällanden, Switzerland). The solid fat content was measured directly from the crystal MATERIALS AND METHODS suspensions (16). Sample. Anhydrous milk fat was obtained from Aargauer Zen- Gas chromatography. The fatty acid composition was de- tralmolkerei Suhr (Suhr, Switzerland). The melting point of termined as methyl esters by gas chromatography (HP 6890, the milk fat was 35°C [corresponding to less than 1.5% solid FID, Hewlett-Packard, Basel, Switzerland) on an SGE BPX- fat content measured by nuclear magnetic resonance (NMR) 70 (Infochroma, Zug, Switzerland) column. The triacylglyc- (15)]. The fatty acid composition of the milk fat is given in erol composition was analyzed in a gas chromatograph (HP Table 1, and the triacylglycerol composition is given in 6890) with an apolar column (J&W DB-5HT, MSP Friedi, Table 2. Koeniz, Switzerland). The fat was diluted in heptane. The re- Standardized preparation of crystal suspensions. The milk sults are expressed as mean average weight percentages on a fat was crystallized in a rheometer (Bohlin Visco 88; Bohlin fatty acid or triacylglycerol basis, respectively (17–19). Instruments Inc., Cranbury NJ; Searle principle) at defined temperatures and a constant shear rate of 1041 s−1 until an RESULTS equilibrium state was reached. Further information is pro- vided elsewhere (16). Crystallization kinetics. Because milk fat is a multicompo- Separation into milk fat fractions. To analyze the resulting nent fat, the amount of triacylglycerols that crystallizes is fractions, the crystal suspensions were filtered in a pressure mainly dependent on the crystallization temperature. In a filter (BHS, Sonthofen, Germany). The equilibrated crystal rheometer for reproducible simulation of a crystallization TABLE 1 Fatty Acid Composition of Milk Fat and Separated Suspensions Crystallized in a Rheometer Directly at Fractionation Temperaturea
Recommended publications
  • Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties
    Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017 Supporting information. Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties Anja A.J. Schröder1,2, Joris Sprakel2, Karin Schroën1, Claire C. Berton-Carabin1 1. Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands. 2. Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Email addresses: [email protected], [email protected], [email protected], [email protected] S1 S1. Tripalmitin CLP dispersions produced with 0.5% w/w (left) and 1% w/w (right) Tween40 in the aqueous phase. S2. Fatty acid composition of palm stearin. Component name Percentage average C14:0 1.16 C16:0 82.18 C18:0 5.12 C18:1 9.03 C18:2 1.83 C18:3 0.02 C20:0 0.32 C22:0 0.25 C22:1 0.04 C24:0 0.05 S3. Hydrodynamic diameter (z-average) measured by dynamic light scattering, and, D[4,3], D[3,2], D10, D50 and D90 measured by static light scattering of CLPs composed of (a) tripalmitin, (b) tripalmitin/tricaprylin 4:1, (c) palm stearin. S2 Type of z-average PdI D[4,3] A D[3,2] D10 D50 D90 lipid (μm) (μm) (μm) (μm) (μm) (μm) Tripalmitin 0.162 ± 0.112 ± 0.130 ± 0.118 ± 0.082 ± 0.124 ± 0.184 ± 0.005 0.02 0.004 0.003 0.002 0.004 0.005 Tripalmitin/ 0.130 ± 0.148 ± 0.131 ± 0.117 ± 0.080 ± 0.124 ± 0.191 ± tricaprylin 0.011 0.02 0.003 0.001 0.004 0.002 0.010 (4:1) Palm 0.158 ± 0.199 ± 0.133 ± 0.119 ± 0.081 ± 0.127 ± 0.195 ± stearin 0.007 0.02 0.002 0.002 0.005 0.000 0.010 A B S4.
    [Show full text]
  • Zahnmedizinische Produkte Und Ihre Inhaltsstoffe
    Medikamente Zahnmedizinische Produkte III–8.3 Zahnmedizinische Produkte und ihre Inhaltsstoffe Produktname Anbieter/ Inhaltsstoffe Verwendung Hersteller/ (Elemente in Massen-%, Vertrieb seit x = keine Angabe) Adaptic LC Johnson & John­ Ba-Glas Kunststoff son AH 26 DeTrey Dentsply Pulver: Silber, Wismutoxid, Methenamin, Wurzelkanal- Titandioxid, Harz: Epoxybisphenolharz Füllungsmasse Alba KF Heraeus/Heraeus/ Pd: 40,0; Ag: 53,0; Sn: x; Zn: 3,5; In: 2,0 Zahnlegierung 1988 Alba Lot 810 Heraeus Kulzer Au: 10,00; Pd: 1,00; Cu: 11,00; Ag: 69,00; Dentallot In: 6,00; Zn: 3,00 Alba Lot 880 Heraeus Kulzer Au: 12,00; Pd: 4,00; Cu: 11,00; Ag: 69,00; Dentallot In: 4,00 Alba SG Heraeus/Heraeus/ Au: 10,0; Pd: 21,0; Ag: 57,0; Cu: 10,0; Zn: Zahnlegierung 1953 2,0 Albabond Heraeus/Heraeus/ Pd: 60,5; Ag: 28,0; Sn: 3,0; In: 7,0; Ga: x Zahnlegierung 1980 Albabond A Heraeus/Heraeus/ Pd: 57,0; Ag: 32,8; Sn: 6,8; In: 3,4 Zahnlegierung 1989 Albabond E Heraeus/Heraeus/ Au: 1,6; Pd: 78,4; Cu: 11,0; Sn: x; In: x; Ga: Zahnlegierung 1983 7,5 Albabond EH Heraeus/Heraeus/ Au: 2,0; Pd: 79,0; Cu: 10,0; Ga: 8,8 Zahnlegierung 1984 Albabond GF Heraeus/Heraeus/ Pd: 60,5; Ag: 19,5; Cu: 7,5; Sn: 3,0; In: 9,5 Zahnlegierung 1987 Albabond U Heraeus/Heraeus/ Au: 2,0; Pd: 75,0; Cu: 9,5; Sn: 3,0; In: 7,0; Zahnlegierung 1982 Ga: 3,5 Albiotic Upjohn Lincomycin Antibiotikum Aleram 2 Allgemeine Gold- Au: x; Pd: 78,5; Cu: 10,5; Sn: x; Ga: 8,0 Zahnlegierung u.
    [Show full text]
  • Sigma Fatty Acids, Glycerides, Oils and Waxes
    Sigma Fatty Acids, Glycerides, Oils and Waxes Library Listing – 766 spectra This library represents a material-specific subset of the larger Sigma Biochemical Condensed Phase Library relating to relating to fatty acids, glycerides, oils, and waxes found in the Sigma Biochemicals and Reagents catalog. Spectra acquired by Sigma-Aldrich Co. which were examined and processed at Thermo Fisher Scientific. The spectra include compound name, molecular formula, CAS (Chemical Abstract Service) registry number, and Sigma catalog number. Sigma Fatty Acids, Glycerides, Oils and Waxes Index Compound Name Index Compound Name 464 (E)-11-Tetradecenyl acetate 592 1-Monocapryloyl-rac-glycerol 118 (E)-2-Dodecenedioic acid 593 1-Monodecanoyl-rac-glycerol 99 (E)-5-Decenyl acetate 597 1-Monolauroyl-rac-glycerol 115 (E)-7,(Z)-9-Dodecadienyl acetate 599 1-Monolinolenoyl-rac-glycerol 116 (E)-8,(E)-10-Dodecadienyl acetate 600 1-Monolinoleoyl-rac-glycerol 4 (E)-Aconitic acid 601 1-Monomyristoyl-rac-glycerol 495 (E)-Vaccenic acid 598 1-Monooleoyl-rac-glycerol 497 (E)-Vaccenic acid methyl ester 602 1-Monopalmitoleoyl-rac-glycerol 98 (R)-(+)-2-Chloropropionic acid methyl 603 1-Monopalmitoyl-rac-glycerol ester 604 1-Monostearoyl-rac-glycerol; 1- 139 (Z)-11-Eicosenoic anhydride Glyceryl monosterate 180 (Z)-11-Hexadecenyl acetate 589 1-O-Hexadecyl-2,3-dipalmitoyl-rac- 463 (Z)-11-Tetradecenyl acetate glycerol 181 (Z)-3-Hexenyl acetate 588 1-O-Hexadecyl-rac-glycerol 350 (Z)-3-Nonenyl acetate 590 1-O-Hexadecyl-rac-glycerol 100 (Z)-5-Decenyl acetate 591 1-O-Hexadecyl-sn-glycerol
    [Show full text]
  • Harvest Season Significantly Influences the Fatty Acid
    biology Article Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen Saad N. Al-Kahtani 1 , El-Kazafy A. Taha 2,* , Soha A. Farag 3, Reda A. Taha 4, Ekram A. Abdou 5 and Hatem M Mahfouz 6 1 Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; [email protected] 2 Department of Economic Entomology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt 3 Department of Animal and Poultry Production, Faculty of Agriculture, University of Tanta, Tanta 31527, Egypt; [email protected] 4 Agricultural Research Center, Bee Research Department, Plant Protection Research Institute, Dokki, Giza, Egypt; [email protected] 5 Agricultural Research Center, Plant Protection Research Institute, Dokki, Giza, Egypt; [email protected] 6 Department of Plant Production, Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt; [email protected] * Correspondence: elkazafi[email protected] Simple Summary: Harvesting pollen loads collected from a specific botanical origin is a complicated process that takes time and effort. Therefore, we aimed to determine the optimal season for harvesting pollen loads rich in essential fatty acids (EFAs) and unsaturated fatty acids (UFAs) from the Al- Ahsa Oasis in eastern Saudi Arabia. Pollen loads were collected throughout one year, and the Citation: Al-Kahtani, S.N.; tested samples were selected during the top collecting period in each season. Lipids and fatty acid Taha, E.-K.A.; Farag, S.A.; Taha, R.A.; composition were determined. The highest values of lipids concentration, linolenic acid (C ), Abdou, E.A.; Mahfouz, H.M Harvest 18:3 Season Significantly Influences the stearic acid (C18:0), linoleic acid (C18:2), arachidic acid (C20:0) concentrations, and EFAs were obtained Fatty Acid Composition of Bee Pollen.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,187,615 B2 Friedman (45) Date of Patent: May 29, 2012
    US008187615B2 (12) United States Patent (10) Patent No.: US 8,187,615 B2 Friedman (45) Date of Patent: May 29, 2012 (54) NON-AQUEOUS COMPOSITIONS FOR ORAL 6,054,136 A 4/2000 Farah et al. DELIVERY OF INSOLUBLE BOACTIVE 6,140,375 A 10/2000 Nagahama et al. AGENTS 2003/O149061 A1* 8/2003 Nishihara et al. .......... 514,266.3 FOREIGN PATENT DOCUMENTS (76) Inventor: Doron Friedman, Karme-Yosef (IL) GB 2222770 A 3, 1990 JP 2002-121929 5, 1990 (*) Notice: Subject to any disclaimer, the term of this WO 96,13273 * 5/1996 patent is extended or adjusted under 35 WO 200056346 A1 9, 2000 U.S.C. 154(b) by 1443 days. OTHER PUBLICATIONS (21) Appl. No.: 10/585,298 Pouton, “Formulation of Self-Emulsifying Drug Delivery Systems' Advanced Drug Delivery Reviews, 25:47-58 (1997). (22) PCT Filed: Dec. 19, 2004 Lawrence and Rees, “Microemulsion-based media as novel drug delivery systems' Advanced Drug Delivery Reviews, 45:89-121 (86). PCT No.: PCT/L2004/OO1144. (2000). He et al., “Microemulsions as drug delivery systems to improve the S371 (c)(1), solubility and the bioavailability of poorly water-soluble drugs' (2), (4) Date: Jul. 6, 2006 Expert Opin. Drug Deliv. 7:445-460 (2010). Prajpati et al. “Effect of differences in Fatty Acid Chain Lengths of (87) PCT Pub. No.: WO2005/065652 Medium-Chain Lipids on Lipid/Surfactant/Water Phase Diagrams PCT Pub. Date: Jul. 21, 2005 and Drug Solubility” J. Excipients and Food Chem, 2:73-88 (2011). (65) Prior Publication Data * cited by examiner US 2007/O190O80 A1 Aug.
    [Show full text]
  • Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms
    foods Article Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea 1, 1, 2 2 3 Ill-Min Chung y, So-Yeon Kim y, Jae-Gu Han , Won-Sik Kong , Mun Yhung Jung and Seung-Hyun Kim 1,* 1 Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; [email protected] (I.-M.C.); [email protected] (S.-Y.K.) 2 National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea; [email protected] (J.-G.H.); [email protected] (W.-S.K.) 3 Department of Food Science and Biotechnology, Graduate School, Woosuk University, Wanju-gun 55338, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-02-2049-6163; Fax: +82-02-455-1044 These authors contributed equally to this study. y Received: 22 July 2020; Accepted: 28 August 2020; Published: 1 September 2020 Abstract: Shiitake mushroom (Lentinula edodes) is commonly consumed worldwide and is cultivated in many farms in Korea using Chinese substrates owing to a lack of knowledge on how to prepare sawdust-based substrate blocks (bag cultivation). Consequently, issues related to the origin of the Korean or Chinese substrate used in shiitake mushrooms produced using bag cultivation have been reported. Here, we investigated differences in fatty acids (FAs) and stable isotope ratios (SIRs) in shiitake mushrooms cultivated using Korean and Chinese substrates under similar conditions (strain, temperature, humidity, etc.) and depending on the harvesting cycle. The total FA level decreased significantly by 5.49 mg g 1 as the harvesting cycle increased (p < 0.0001); however, no differences · − were found in FAs between shiitake mushrooms cultivated using Korean and Chinese substrates.
    [Show full text]
  • Derived Variables - Nutrients Responses to the 116 Items on the DQES Are Converted to Nutrients by Programs Developed at the CCV
    Derived Variables - Nutrients Responses to the 116 items on the DQES are converted to nutrients by programs developed at the CCV. Two standard portion factors used in the calculation of nutrient are included in the data sets. Variable Description PSF Portion Standard Factor APSF a Alcohol Portion Standard Factor Sources of nutrient data Values for most nutrients are based on the Australian food composition data base, NUTTAB95.1 Nutrient values form other sources are listed below. None of these new values have been tested or validated so the CCV recommend that the values be used with caution; the CCV welcome any feedback. o Folate (Folate) and vitamin E (VitE) are derived from British food composition tables.2 o Alpha-Carotene (AlphCarot), Beta-Carotene (Bet_Carot), Beta-Cryptoxanthin (BetaCrypt), Lutein plus Zeaxanthin (LutnZeax) and Lycopene (Lycopene) are derived from the USDA data base3 and are measured in micrograms/day. o Glycemic index (GlycIndex ) and glycemic load (GlycLoad) are derived from an international table.4 Note that the variable Bet_Carot measures total ß-carotene intake, and should not be confused with the variable BetaCarot which estimates ß-carotene equivalents (mcg/day) from NUTTAB and is calculated as the sum of the ß-carotene and half the amounts of - carotene and - and ß-cryptoxanthins present. Although values for the 2 variables are likely to be highly correlated, values may differ to a large extent, having been estimated from different databases, developed at different times in different countries. Also different foods would have been averaged to match values with the DQES items. Hodge at al have described the derivation of values for Glycemic index (GI) and glycemic load (GL) as follows:5 ‘Glycemic index is a method of ranking foods on the basis of the blood glucose response to a given amount of carbohydrate from that food.
    [Show full text]
  • Chemical Composition and Nutritive Value of Hot Pepper Seed (Capsicum Annuum) Grown in Northeast Region of China Yu ZOU1*, Kun MA1, Mixia TIAN1
    a Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.6803 Chemical composition and nutritive value of hot pepper seed (Capsicum annuum) grown in Northeast Region of China Yu ZOU1*, Kun MA1, Mixia TIAN1 Abstract Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils. Keywords: hot pepper seed; proximate composition; amino acid composition; fatty acid profile; mineral element content. Practical Application: Hot pepper seeds can be potentially used as good sources of food ingredients and edible oils.
    [Show full text]
  • Download PDF (Inglês)
    Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.scielo.br/bjce Vol. 34, No. 03, pp. 659 – 669, July – September, 2017 dx.doi.org/10.1590/0104-6632.20170343s20150669 FATTY ACIDS PROFILE OF CHIA OIL-LOADED LIPID MICROPARTICLES M. F. Souza1, C. R. L.Francisco1; J. L. Sanchez2, A. Guimarães-Inácio2, P. Valderrama2, E. Bona2, A. A. C. Tanamati1, F. V. Leimann2 and O. H. Gonçalves2* 1Universidade Tecnológica Federal do Paraná, Departamento de Alimentos, Via Rosalina Maria dos Santos, 1233, Caixa Postal 271, 87301-899 Campo Mourão, PR, Brasil. Phone/Fax: +55 (44) 3518-1400 2Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Tecnologia de Alimentos, Via Rosalina Maria dos Santos, 1233, Caixa Postal 271, 87301-899 Campo Mourão, PR, Brasil. Phone/Fax: +55 (44) 3518-1400 *E-mail: [email protected] (Submitted: October 14, 2015; Revised: August 25, 2016; Accepted: September 6, 2016) ABSTRACT - Encapsulation of polyunsaturated fatty acid (PUFA)is an alternative to increase its stability during processing and storage. Chia (Salvia hispanica L.) oil is a reliable source of both omega-3 and omega-6 and its encapsulation must be better evaluated as an effort to increase the number of foodstuffs containing PUFAs to consumers. In this work chia oil was extracted and encapsulated in stearic acid microparticles by the hot homogenization technique. UV-Vis spectroscopy coupled with Multivariate Curve Resolution with Alternating Least-Squares methodology demonstrated that no oil degradation or tocopherol loss occurred during heating. After lyophilization, the fatty acids profile of the oil-loaded microparticles was determined by gas chromatography and compared to in natura oil.
    [Show full text]
  • Food Scientist's Guide to Fats and Oils For
    FOOD SCIENTIST’S GUIDE TO FATS AND OILS FOR MARGARINE AND SPREADS DEVELOPMENT by KATHLEEN M. MORLOK B.S., University of Minnesota, 2005 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Food Science KANSAS STATE UNIVERSITY Manhattan, Kansas 2010 Approved by: Major Professor Kelly J.K. Getty Animal Sciences & Industry Abstract Fats and oils are an important topic in the margarine and spreads industry. The selection of these ingredients can be based on many factors including flavor, functionality, cost, and health aspects. In general, fat is an important component of a healthy diet. Fat or oil provides nine calories per gram of energy, transports essential vitamins, and is necessary in cellular structure. Major shifts in consumption of fats and oils through history have been driven by consumer demand. An example is the decline in animal fat consumption due to consumers’ concern over saturated fats. Also, consumers’ concern over the obesity epidemic and coronary heart disease has driven demand for new, lower calorie, nutrient-rich spreads products. Fats and oils can be separated into many different subgroups. “Fats” generally refer to lipids that are solid at room temperature while “oils” refer to those that are liquid. Fatty acids can be either saturated or unsaturated. If they are unsaturated, they can be either mono-, di-, or poly-unsaturated. Also, unsaturated bonds can be in the cis or trans conformation. A triglyceride, which is three fatty acids esterified to a glycerol backbone, can have any combination of saturated and unsaturated fatty acids. Triglycerides are the primary components of animal and vegetable fats and oils.
    [Show full text]
  • Chemical Interesterification of the Rapeseed Oil with Methyl Acetate in the Presence of Potassium Tert-Butoxide in Tert-Butanol
    International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-10, October 2015 Chemical Interesterification of the Rapeseed Oil with Methyl Acetate in the Presence of Potassium tert-Butoxide in tert-Butanol Z.Sustere1, V.Kampars Abstract - The chemical interesterification of the rapeseed oil The other possibility is the interesterification of triglycerides (TG) with methyl acetate. It is a promising is a promising alternative to transesterification in biodiesel alternative to transesterification because TAc is formed production due to the fact that triacetin is formed instead of instead of glycerol [8]-[12]. Furthermore, the glycerol, which is usually considered as a waste product. Recent interesterification method eliminates the risk of deactivation of enzyme by glycerol, when enzymatic biodiesel production studies have shown that triacetin evolved as a valuable additive were realized, as the triacetin has no negative effect on the for biodiesel. Using commercially available sodium methoxide in lipase activity [8], [13]. When TAc is included in the methanol as a catalyst in interesterification does not allow to formulation of biodiesel, the amount of biofuel obtained from TG increase [14]. A stoichiometric analysis indicates that achieve the highest possible yield of triacetin, due to the side theoretically predicted FAME and TAc content by full TG reactions place in methanol. The use of potassium tert-butoxide conversion into these two products will be 81.1 wt.% and 18.9 in tert-butanol as a catalyst increased the content of triacetin. wt.%, respectively. The maximum content of fatty acid methyl esters and triacetin In contrast to the transesterification, in the was 73.2 wt.% and 16.6 wt.%, respectively (the theoretically interesterification reaction one ester exchanges its alcohol predicted was 81.1 wt.% and 18.9 wt.%).
    [Show full text]
  • Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems
    foods Review Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems Vishnu Kalladathvalappil Venugopalan 1 , Lekshmi Ramadevi Gopakumar 2, Ajeeshkumar Kizhakkeppurath Kumaran 2, Niladri Sekhar Chatterjee 2, Vishnuja Soman 3, Shaheer Peeralil 2, Suseela Mathew 2, David Julian McClements 4,* and Ravishankar Chandragiri Nagarajarao 2 1 Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, India; [email protected] 2 Central Institute of Fisheries Technology (CIFT), Indian Council for Agricultural Research, Matsyapuri P.O, Kochi 682029, India; [email protected] (L.R.G.); [email protected] (A.K.K.); [email protected] (N.S.C.); [email protected] (S.P.); [email protected] (S.M.); [email protected] (R.C.N.) 3 Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India; [email protected] 4 Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA * Correspondence: [email protected] Abstract: Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance Citation: Venugopalan, V.K.; human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because Gopakumar, L.R.; Kumaran, A.K.; of their potential nutritional and health benefits.
    [Show full text]