ABSTRACTS 2018 AOCS ANNUAL MEETING and EXPO May 6–9, 2018

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACTS 2018 AOCS ANNUAL MEETING and EXPO May 6–9, 2018 ABSTRACTS 2018 AOCS ANNUAL MEETING AND EXPO May 6–9, 2018 BIO 1.1/IOP 1: Biorenewable Polymers Chairs: Richard D. Ashby, USDA, ARS, ERRC, USA; and Baki Hazer, Kapadokya University and Bülent Ecevit University, Turkey Synthesis of Resinic Acid and Lignin Derivative in large quantity and high yield via enzymatic Dimers for Copolymerization with Vegetable Oil- catalysis using a laccase. After chemical based Monomers Audrey Llevot*, LCPO, France modifications, the obtained dimers were tested The awareness of environmental in copolymerization with different fatty acid deterioration and our dependency on depleting derivatives. The thermomechanical properties of fossil feedstocks force research to find innovative the polymers will be discussed, as well as the solutions in order to design a more sustainable sustainability of their synthesis. future. With a worldwide plastic production of over 300 million metric tons per year, polymer Dual Cure Alkyds Mark D. Soucek*, University of science represents a very active field in the use of Akron, USA renewable feedstocks. Among the available A number of different approaches have bioresources, vegetable oils lead to a large been used to speed the curing/drying process: platform of aliphatic molecules and to a wide 1) reactive diluents, allyl ether; 2) change catalyst range of thermoplastic and thermoset polymers Fe based; 3) change curing mechanism, moisture, after modifications. In order to broaden the UV or Visible light. Light curable alkyds were palette of renewable polymers, other molecules synthesized by functionalizing hydroxyl need to be investigated and used to tune the terminated medium and long linseed oil alkyds thermomechanical properties of the vegetable with methacryloyl chloride or acryloyl chloride. oil-based aliphatic polymers. Cycloaliphatic and Two glycerol based reactive diluents were aromatic compounds are two categories of prepared by reacting glycerol with methacryloyl molecules which enable the synthesis of chloride or acryloyl chloride. Real time FTIR, polymers with high thermal stability and rigidity. photo-DSC and UV-Rheometer were used to In our work, a polycyclic biobased molecule, i.e., study the curing kinetics of UV curable alkyd with resinic acids, and phenolic compounds potentially 0–30 wt% of reactive diluent. The conversion of derived from lignin were studied as comonomers methacrylic and acrylic double bonds are above for vegetable oil-based polymers. Both classes of 80% within 10s of radiation at wavelength substrates were dimerized in order to get ranging from 320nm to 500nm. The difunctional symmetric synthons. On the one polymerization rate increases with the addition hand, abietic acid dimers synthesized via a of reactive diluent, however the final conversion cationic mechanism were esterified with slightly decreases with increasing percentage of undecenol and copolymerized with undecenyl reactive diluent due to the formation of undecenoate by ADMET methodology. On the crosslinking between UV curable alkyd and other hand, we developed a “green” process to reactive diluent limiting the mobility of the dimerize phenolic compounds derived from lignin reactive double bonds. DMA was utilized to – 1 – ABSTRACTS 2018 AOCS ANNUAL MEETING AND EXPO May 6–9, 2018 determine the Tg and crosslink density of each Stereolithography (SLA), Selective Laser Melting system. With the increase of reactive diluent (SLM), Selective Laser Sintering (SLS), etc. The percentage, initial elastic modulus and crosslink progress in production systems and machinery is density will also increase. followed by strong demand for new materials that can meet the specific requirements of Reflection of Structural features of oils on new technology. Plastics produced from properties of polymeric materials Zoran petrochemicals are common materials in this Petrovic*, Pittsburg State University, USA area. Due to the depleting natural resources and Oils are present in all living organisms as an negative effect of carbon dioxide on the important energy source. They are triglycerides environment, there is a strong demand for of widely varying composition. Natural oils as a replacement of petrochemicals with bio-based platform for new oleochemicals have several renewable resources. Bio-based plastics can be features which make them attractive for a made from a variety of natural resources, range of new products. They are generally very including oils. Bio-oils are emerging and are heterogeneous in structure, length of fatty acids, promising raw materials for synthesis of a variety number of double bonds, with or without of polymers and plastics, including those that can functional groups and varying their positions be used in additive manufacturing. Natural oil in the fatty acid chains. Generally, oil-based based non-isocyanate polyurethanes (NIPUs) materials are softer than corresponding products synthesized from cyclic carbonates and amines from petrochemical sources but structural are promising new materials for this application. peculiarities can be beneficial or detrimental There are some structural specifics of NIPUs depending on application. Effects of specific which give them excellent adhesive properties. features of oils on properties will be discussed. We used soybean oil based NIPUs for improvement of interlayer adhesion of polylactic Bio-based Oil Potential in Additive acid filaments used in AM. The effect of natural Manufacturing. Ivan Javni1, Olivera Bilic2, Jian oil-based NIPUs on physical and mechanical Hong2, Vivek Sharma1, Xianmei Wan1, and Jamie M. Messman4, 1Pittsburg State University, USA; properties of filaments was evaluated. The 2Kansas Polymer Research Center, Pittsburg State experimental results corroborated the presumed University, USA; 3Dept. of Energy's National NIPUs structure and their effect on filament Security Campus, managed by Honeywell FMT, preparation and 3D printing. LLC, USA Additive Manufacturing (AM), or 3D printing Multifunctional Fatty Acid Macroperoxide is a rising technology that is breaking existing Initiators Obtained by the Autoxidization. product design and manufacturing methods. Synthesis of Block/Graft Copolymers via Free This technology is advancing very strongly in Radical and Ring Opening Polymerization Baki 1,2 1 2 capability of making complex elements in low Hazer , Melike Eren , Elif Ayyıldız , Faruk Bahadır1 , 1Bülent Ecevit University Faculty of Arts volumes in a rapid and cost-effective way. This and Sciences, Dept. of Chemistry; Faculty of technology involves very different processes, Engineering, Departments of Metallurgical and such as Fused Deposition Modeling (FDM), Materials Engineering,Turkey; 2 Bülent Ecevit – 2 – ABSTRACTS 2018 AOCS ANNUAL MEETING AND EXPO May 6–9, 2018 University Faculty of Arts and Sciences, Nano amount of trisaturated triacylglycerols from Technology Engineering, Turkey about 4.2% to about 28.5%, 6.8 times higher than Unsaturated plant oils/fatty acids (UPOFA) the initial amount found in the mother oil. The can undergo autoxidation under atmospheric high melting fraction which concentrated with conditions to produce macroperoxide initiators. the trisaturated triacylglycerols is well separated Pure unsaturated fatty acids such as linolenic, from the low melting fraction (shown by the linoleic and oleic acid were exposed to air oxygen differential scanning calorimetry melting profile), under daylight at room temperature which is indicating easy of fractionation. Fractionation of called “ecofriendly autoxidation”. Eco-friendly the EDIE PO produced palm stearin (POs) with an autoxidation process creates peroxide linkages iodine value of less than 10. The POs crystallized in order to obtain fatty acid oligomer that is rapidly and stabilized in mixtures of β and β’ called macroperoxide initiator. Oleic acid crystals. The POs as it is, blended or restructured macroperoxide initiator was used in the free with vegetable oil via interesterification, and radical polymerization of styrene in order to texturized, produced a trans-free hardstock with evaluate the polymerization kinetics. Because of excellent oil binding capacity, and able to different functional groups, the macroperoxide perform effectively as structural fat in the initiators were used in the synthesis of formulation of trans free reduced saturated solid block/graft copolymers. Polystyrene-poly oleic fat products. acid-polycaprolactone, polystyrene-poly oleic acid-polyethylene glycol, poly N-isopropyl acryl Unexpected Selectivity in the Functionalization amide-poly oleic acid-polyethylene glycol of Neat Castor Oil Under Benign Catalyst-free 1 block/graft copolymers were obtained. Structural Conditions Latchmi Raghunanan* , and José M. 2 1 and physicochemical characterization of the Franco , Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and products was done. Lower critical solution Chemistry, Trent University, Canada; 2Pro2TecS- temperature of the thermo responsive double Chemical Product and Process Technology hydrophilic copolymer, poly N-isopropyl acryl Research Centre. Departamento de Ingeniería amide-poly oleic acid-polyethylene glycol was Química, Facultad de Ciencias Experimentales, found to be 36 oC. Universidad, Spain Super Palm Stearin from Enzymatic Directed Abstract Pending Interesterification of Palm Oil Noor Lida Habi Mat Dian*1, Miskandar Mat Sahri1, Tan Chin Ping2, and Lai Oi Ming2, 1Malaysian Palm Oil Board, Malaysia; 2Universiti Putra Malaysia, Malaysia Enzymatic directed interesterification (EDIE) of
Recommended publications
  • Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties
    Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017 Supporting information. Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties Anja A.J. Schröder1,2, Joris Sprakel2, Karin Schroën1, Claire C. Berton-Carabin1 1. Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands. 2. Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Email addresses: [email protected], [email protected], [email protected], [email protected] S1 S1. Tripalmitin CLP dispersions produced with 0.5% w/w (left) and 1% w/w (right) Tween40 in the aqueous phase. S2. Fatty acid composition of palm stearin. Component name Percentage average C14:0 1.16 C16:0 82.18 C18:0 5.12 C18:1 9.03 C18:2 1.83 C18:3 0.02 C20:0 0.32 C22:0 0.25 C22:1 0.04 C24:0 0.05 S3. Hydrodynamic diameter (z-average) measured by dynamic light scattering, and, D[4,3], D[3,2], D10, D50 and D90 measured by static light scattering of CLPs composed of (a) tripalmitin, (b) tripalmitin/tricaprylin 4:1, (c) palm stearin. S2 Type of z-average PdI D[4,3] A D[3,2] D10 D50 D90 lipid (μm) (μm) (μm) (μm) (μm) (μm) Tripalmitin 0.162 ± 0.112 ± 0.130 ± 0.118 ± 0.082 ± 0.124 ± 0.184 ± 0.005 0.02 0.004 0.003 0.002 0.004 0.005 Tripalmitin/ 0.130 ± 0.148 ± 0.131 ± 0.117 ± 0.080 ± 0.124 ± 0.191 ± tricaprylin 0.011 0.02 0.003 0.001 0.004 0.002 0.010 (4:1) Palm 0.158 ± 0.199 ± 0.133 ± 0.119 ± 0.081 ± 0.127 ± 0.195 ± stearin 0.007 0.02 0.002 0.002 0.005 0.000 0.010 A B S4.
    [Show full text]
  • Zahnmedizinische Produkte Und Ihre Inhaltsstoffe
    Medikamente Zahnmedizinische Produkte III–8.3 Zahnmedizinische Produkte und ihre Inhaltsstoffe Produktname Anbieter/ Inhaltsstoffe Verwendung Hersteller/ (Elemente in Massen-%, Vertrieb seit x = keine Angabe) Adaptic LC Johnson & John­ Ba-Glas Kunststoff son AH 26 DeTrey Dentsply Pulver: Silber, Wismutoxid, Methenamin, Wurzelkanal- Titandioxid, Harz: Epoxybisphenolharz Füllungsmasse Alba KF Heraeus/Heraeus/ Pd: 40,0; Ag: 53,0; Sn: x; Zn: 3,5; In: 2,0 Zahnlegierung 1988 Alba Lot 810 Heraeus Kulzer Au: 10,00; Pd: 1,00; Cu: 11,00; Ag: 69,00; Dentallot In: 6,00; Zn: 3,00 Alba Lot 880 Heraeus Kulzer Au: 12,00; Pd: 4,00; Cu: 11,00; Ag: 69,00; Dentallot In: 4,00 Alba SG Heraeus/Heraeus/ Au: 10,0; Pd: 21,0; Ag: 57,0; Cu: 10,0; Zn: Zahnlegierung 1953 2,0 Albabond Heraeus/Heraeus/ Pd: 60,5; Ag: 28,0; Sn: 3,0; In: 7,0; Ga: x Zahnlegierung 1980 Albabond A Heraeus/Heraeus/ Pd: 57,0; Ag: 32,8; Sn: 6,8; In: 3,4 Zahnlegierung 1989 Albabond E Heraeus/Heraeus/ Au: 1,6; Pd: 78,4; Cu: 11,0; Sn: x; In: x; Ga: Zahnlegierung 1983 7,5 Albabond EH Heraeus/Heraeus/ Au: 2,0; Pd: 79,0; Cu: 10,0; Ga: 8,8 Zahnlegierung 1984 Albabond GF Heraeus/Heraeus/ Pd: 60,5; Ag: 19,5; Cu: 7,5; Sn: 3,0; In: 9,5 Zahnlegierung 1987 Albabond U Heraeus/Heraeus/ Au: 2,0; Pd: 75,0; Cu: 9,5; Sn: 3,0; In: 7,0; Zahnlegierung 1982 Ga: 3,5 Albiotic Upjohn Lincomycin Antibiotikum Aleram 2 Allgemeine Gold- Au: x; Pd: 78,5; Cu: 10,5; Sn: x; Ga: 8,0 Zahnlegierung u.
    [Show full text]
  • Esterifikasi Gliserol Dari Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis Zeolit Alam
    Esterifikasi Gliserol Dari Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis Zeolit Alam Nirmala Sari 1, Zuchra Helwani 2, dan Hari Rionaldo3 Laboratorium Teknologi Oleokimia Program Studi Teknik Kimia S1, Fakultas Teknik Universitas Riau Kampus Binawidya Km. 12,5 Simpang Baru Panam, Pekanbaru 28293 *Email : [email protected] ABSTRACT Glycerol is a by-product of biodiesel production from transesterification reaction generated 10% volume product. The increase of biodiesel production is followed by the increase of the glycerol as by product. Glycerol when esterified with acetic acid formed Triacetin. Triacetin has many uses for food, non-food and additives in biofuel feedstock that is renewable and environmentally friendly. In this study will be make Triacetin from reaction esterification of crude glycerol purified with acetic acid glacial and using natural zeolite catalyst has been activated. Making triacetin performed with a three-neck flask equipped with a condenser, heating mantle, thermometer and magnetic stirred at 100 ° C, 100 mesh size catalyst and reaction time for 4 hours. Process of qualitative analysis using FT-IR instrument has detected the exixtence of Triacetin product. The variables are varied ratio reactant of glycerol and acetic acid, and the concentration catalyst. The highest conversion obtained for 90.02% in reactan ratio mol glycerol and acetic acid 1: 7, catalyst concentration of 3% to weight of acetic acid. Comparison of reagents give real effect to the conversion of glycerol into Triacetin, while the catalyst concentration does not give a significant effect on glycerol conversion be Triacetin. Keywords: acetic acid, esterification, glycerol, Triacetin 1. Pendahuluan Gliserol merupakan produk samping gliserol ester maleat resin.
    [Show full text]
  • Triglyceride Transesterification in Heterogeneous Reaction System with Calcium Oxide As Catalyst
    Rev. Fac. Ing. Univ. Antioquia N.° 57 pp. 7-13. Enero, 2011 Triglyceride transesterification in heterogeneous reaction system with calcium oxide as catalyst Transesterificación de triglicéridos en el sistema de reacción heterogénea con óxido de calcio como catalizador Mónica Becerra Ortega, Aristóbulo Centeno Hurtado, Sonia Azucena Giraldo Duarte* Centro de Investigaciones en Catálisis (CICAT). Escuela de Ingeniería Química. Universidad Industrial de Santander (UIS). Carrera 27 Calle 9. Bucaramanga. Colombia (Recibido el 03 de febrero de 2010. Aceptado el 15 de octubre de 2010) Abstract In this work, the behavior of the CaO as a potential catalyst for the transesterification of triglyceride towards biodiesel production was studied. The effect of the alcohol type, the ratio of alcohol/triacetin, the amount of catalyst, and the chain length of triglyceride on the catalytic behavior of CaO was analyzed. Total conversion was obtained at room temperature with a 6:1 molar ratio of methanol to triacetin over 1% of CaO, after 1 h. It was demonstrated that the whole reaction occurs in heterogeneous phase. During five reaction cycles the CaO maintained a high catalytic activity, showing its good stability. Additionally, it was established that the length of the triglyceride used influenced the transesterification reaction yield due to the steric hindrances and diffusional limitations in the fluid phase. ----- Keywords: Biodiesel, triacetin, basic catalysis, triolein Resumen En este trabajo se estudió el comportamiento del CaO como potencial catalizador en la transesterificación de trigliceridos para la producción de biodiesel. Se analizó el efecto del tipo de alcohol, la relación molar alcohol/triacetina, la cantidad de catalizador y el tamaño de la cadena del triglicérido sobre su comportamiento catalítico.
    [Show full text]
  • 2013 Annual Meeting Abstracts Biotechnology
    2013 Annual Meeting Abstracts Biotechnology MONDAY AFTERNOON BIO 1.1/PHO 1: Polar Lipids: Chemistry, Technology, and Applications Chair(s): X. Xu, Wilmar Global R&D Center, China; Aarhus University, Denmark; M. Ahmad, Jina Pharmaceuticals Inc., USA Enzymatic "green" Preparation of Sugar-fatty Acid Esters D. Hayes(1) (1)University of Tennessee, United States of America Saccharide-fatty acid esters are an emerging category of biobased surfactants prepared entirely from renewable resources that are used as emulsifiers in foods, cosmetics, and pharmaceuticals, and possess anticancer and insecticidal properties. Typically, the esters are prepared chemically under harsh condition: temperatures near 200 C, employment of solvents, etc., which can cause undesirable side-reactions and produce waste products. Our group has been investigating the use of lipases and novel bioreactor system design to prepare sugar esters under solvent-free conditions and relatively low temperature: ~65 C. Using a stoichiometric feed of saccharide and fatty acid, our approach achieves 90-95% pure ester on a 10-30 gram scale, which, due to the absence of excess reactants and solvent, will require little or no further downstream purification to achieve industrial specifications. The presentation will provide an overview of our recent work, including an evaluation of its physical properties. Deep Eutectic Solvents: new Opportunities for Lipase-catalyzed Reactions E. DURAND(1), J. LECOMTE(2), B. BAREA(3), P. VILLENEUVE(4) (1)CIRAD, UMR IATE, France (2)CIRAD, UMR IATE, France (3)CIRAD, UMR IATE, France (4)CIRAD, UMR IATE, France In recent years, researchers focused on finding green alternative media to organic solvents for enzyme-catalyzed reactions.
    [Show full text]
  • Chemical Kinetics for Synthesis of Triacetin from Biodiesel Byproduct
    www.ccsenet.org/ijc International Journal of Chemistry Vol. 4, No. 2; April 2012 Chemical Kinetics for Synthesis of Triacetin from Biodiesel Byproduct Zahrul Mufrodi Department of Chemical Engineering, Ahmad Dahlan University 9 Kapas Street, Yogyakarta 55166, Indonesia Tel: 62-274-743-6596 E-mail: [email protected] Sutijan, Rochmadi & Arief Budiman Department of Chemical Engineering, Gadjah Mada University 2 Grafika Street, Yogyakarta 55281, Indonesia Received: December 9, 2011 Accepted: January 29, 2012 Published: April 1, 2012 doi:10.5539/ijc.v4n2p101 URL: http://dx.doi.org/10.5539/ijc.v4n2p101 The research is financed by KKP3T department of agriculture and Department of national education Indonesia Abstract The reaction kinetic of the glycerol acetylation with acetic acid catalyzed by sulfuric acid has been studied in the frame of continuous triacetin production. Glycerol, acetic acid and sulfuric acid catalyst were reacted in a batch reactor, in order to get reaction kinetics data. The mole ratio of catalyst to glycerol and temperature were studied during the experience. This study concluded that the selectivity of triacetin increased with increase in mole ratio of catalyst to glycerol. Increasing temperatures lead to increase selectivity of triacetin. It will decreased at the time of acetic acid has begun to evaporate. Triacetin synthesis is an exothermic reaction, a higher reaction temperature will cause in shifting the balance toward formation of reactants. This needs to be anticipated by taking one of the products so that the equilibrium shifting toward product formation. Keywords: Reaction kinetic, Glycerol, Acetylation, Triacetin, Acetic acid 1. Introduction Needs of oil energy sources from fossil fuels are increasing, while inventories are running low.
    [Show full text]
  • PARTIAL CHARACTERIZATION of LIPASE from COCOA BEANS (Theobroma Cacao
    448 Indo. J. Chem., 2008, 8 (3), 448 - 453 PARTIAL CHARACTERIZATION OF LIPASE FROM COCOA BEANS (Theobroma cacao. L.) OF CLONE PBC 159 Ratna Agung Samsumaharto Faculty of Biology, Setia Budi University, Jl. Let. Jend. Sutoyo Mojosongo – Surakarta 57127 Received 3 April 2008; Accepted 15 October 2008 ABSTRACT A study was carried out to characterize the cocoa lipase from cocoa beans (Theobroma cacao, L.) of clone PBC 159. The optimum temperature of cocoa lipase was 30-40 °C and the pH optimum was 7.0-8.0. The moleculer weight of the lipase enzyme was in between 45-66 kDa. The results indicate that Km value for cocoa bean lipase was 2.63 mM, when trimyristin was used as a substrate. The incubation of cocoa bean lipase with triolein and tributyrin (as substrate) yielded Km of 11.24 and 35.71 mM, respectively. The Vmax value obtained from the incubation of the lipase with a wide range of substrates, including tributyrin, trimyristin and triolein, are expressed as µmole acid/min/mg protein for cocoa lipase. Vmax values decreased with the increase in the triacylglycerol chain-length, with Vmax values of 27.78, 13.16 and 11.63 µmole acid/min/mg protein when incubated with tributyrin, trimyristin and triolein, respectively. Inhibition of lipase occurred in the presence of diisopropyl flourophosphate, N- bromosuccinimide and 5,5-dithiobis-(-2-nitrobenzoic acid). Keywords: characterization, lipase, cocoa beans INTRODUCTION According to Hassan [8] the lipase showed that the optimum temperature for oil palm mesocarp lipase Lipases are ester hydrolases or esterases since activity range between 20.0 to 32.5 °C.
    [Show full text]
  • A DFT Investigation of Methanolysis and Hydrolysis of Triacetin Abstract 1
    A DFT investigation of methanolysis and hydrolysis of triacetin Taweetham Limpanuparba, Kraiwan Punyainb, Yuthana Tantirungrotechaic,d,* aDepartment of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand bDepartment of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand cNational Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand dTheoretical Chemistry Laboratory, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand * Corresponding author at: Address: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand. This paper was subsequently accepted for publication in Journal of Molecular Structure: THEOCHEM Volume 955, Issues 1–3, 15 September 2010, Pages 23–32 Refer to http://dx.doi.org/10.1016/j.theochem.2010.05.022 for the final published version. Abstract The thermodynamic and kinetic aspects of the methanolysis and hydrolysis reactions of glycerol triacetate or triacetin, a model triacylglycerol compound, were investigated by using Density Functional Theory (DFT) at the B3LYP/6-31++G(d,p) level of calculation. Twelve elementary steps of triacetin methanolysis were studied under acid-catalyzed and base-catalyzed conditions. The mechanism of acid-catalyzed methanolysis reaction which has not been reported yet for any esters was proposed. The effects of substitution, methanolysis/hydrolysis position, solvent and face of nucleophilic attack on the free energy of reaction and activation energy were examined. The prediction confirmed the facile position at the middle position of glycerol observed by NMR techniques. The calculated activation energy and the trends of those factors agree with existing experimental observations in biodiesel production. 1. Introduction Triacylglyceride (TG) is a major constituent of naturally available oil and fat.
    [Show full text]
  • Food Scientist's Guide to Fats and Oils For
    FOOD SCIENTIST’S GUIDE TO FATS AND OILS FOR MARGARINE AND SPREADS DEVELOPMENT by KATHLEEN M. MORLOK B.S., University of Minnesota, 2005 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Food Science KANSAS STATE UNIVERSITY Manhattan, Kansas 2010 Approved by: Major Professor Kelly J.K. Getty Animal Sciences & Industry Abstract Fats and oils are an important topic in the margarine and spreads industry. The selection of these ingredients can be based on many factors including flavor, functionality, cost, and health aspects. In general, fat is an important component of a healthy diet. Fat or oil provides nine calories per gram of energy, transports essential vitamins, and is necessary in cellular structure. Major shifts in consumption of fats and oils through history have been driven by consumer demand. An example is the decline in animal fat consumption due to consumers’ concern over saturated fats. Also, consumers’ concern over the obesity epidemic and coronary heart disease has driven demand for new, lower calorie, nutrient-rich spreads products. Fats and oils can be separated into many different subgroups. “Fats” generally refer to lipids that are solid at room temperature while “oils” refer to those that are liquid. Fatty acids can be either saturated or unsaturated. If they are unsaturated, they can be either mono-, di-, or poly-unsaturated. Also, unsaturated bonds can be in the cis or trans conformation. A triglyceride, which is three fatty acids esterified to a glycerol backbone, can have any combination of saturated and unsaturated fatty acids. Triglycerides are the primary components of animal and vegetable fats and oils.
    [Show full text]
  • Formation of Polyol-Fatty Acid Esters by Lipases in Reverse Micellar Media
    Formation of Polyol-Fatty Acid Esters by Lipases in Reverse Micellar Media Douglas G. Hayes* and Erdogan Gulari’ Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2 136 Received July 19, 1991Mccepted January 7, 1992 The synthesis of polyol-fatty acid esters has strong implica- content to shift thermodynamic equilibrium in favor of tions in such industries as foods, cosmetics, and polymers. esterification over hydrolysis, and be heterogeneous or We have investigated these esterification reactions employ- biphasic in nature to accommodate all media compo- ing the polyols ethylene glycol, 2-monoglyceride, and sugars and their derivatives with the biocatalyst lipase in water/ nents and provide lipases with an interface, which in AOT/isooctane reverse micellar media. For the first reaction, most cases enhances the enzymes’ performance. We 50-60% conversion was achieved and product selectivity have employed reverse micellar media composed of toward the monoester over the diester shown possible by nanometer-sized dispersions of aqueous or polar mate- employing lipase from Rhizopus delemar. A simple kinetic rial in a lipophilic organic continuum formed by the ac- model based on the formation of an acyl-enzyme interme- diate accurately predicted the effect of polyol concentra- tion of surfactants/cosurfactants to fulfill these criteria. tion but not the effect of fatty acid or water concentration In addition, compared to alternate types of reaction me- probably due to the model exclusion of partitioning effects. dia, reverse micellar media provide excellent enzyme- The success of this reaction in reverse micellar media is substrate contact due to its dynamic nature, is easy to due greatly to its capacity to solubilize large quantities of prepare, and has a large amount of interfacial area.
    [Show full text]
  • Glycerin and the Market
    GLYCERIN AND THE MARKET By Valentine Chijioke Mbamalu Approved: Frank Jones Tricia Thomas Professor of Engineering Assistant Professor of Engineering (Chair) (Committee Member) Neslihan Alp William Sutton Professor of Engineering Dean of the College of Engineering and (Committee Member) Computer Science A. Jerald Ainsworth Dean of the Graduate School GLYCERIN AND THE MARKET By Valentine Chijioke Mbamalu A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master’s of Engineering The University of Tennessee at Chattanooga Chattanooga, Tennessee May 2013 ii Copyright © 2013 Valentine Chijioke Mbamalu All Rights Reserved iii ABSTRACT Glycerin, a trihydric alcohol, had once enjoyed a good market value but, is now faced with global oversupply and this makes the market volatile. It is a byproduct of biodiesel production thought as an added value to biodiesel operations. It is now faced with an unpredictable market and probably oversupply as an outcome of increased biodiesel production. There are two types of glycerin market; the refined glycerin with its solid price and crude glycerin which is volatile. There are new applications for glycerin being developed or being implemented and it will be a source of strength to the market. This thesis takes an in-depth review of glycerol from its sources to refining and the market. iv ACKNOWLEDGEMENTS First and foremost I thank the Almighty God for the strength and grace He has given me, without which I could not have made it to this point. I express my profound gratitude to my thesis advisor Dr.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Triacetin (Casrn 102-76-1)
    EPA/690/R-12/034F l Final 11-19-2012 Provisional Peer-Reviewed Toxicity Values for Triacetin (CASRN 102-76-1) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Jason C. Lambert, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Ghazi Dannan, PhD National Center for Environmental Assessment, Washington, DC Zheng (Jenny) Li, PhD, DABT National Center for Environmental Assessment, Washington, DC This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). i Triacetin CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iii BACKGROUND ............................................................................................................................ 1 DISCLAIMERS .............................................................................................................................. 1 QUESTIONS REGARDING PPRTVS .........................................................................................
    [Show full text]