Ii APPLIED RANGE ECOLOGY of REINDEER (Rangifer Tarandus Tarandus) on the SEWARD PENINSULA, ALASKA a THESIS Presented to The

Total Page:16

File Type:pdf, Size:1020Kb

Ii APPLIED RANGE ECOLOGY of REINDEER (Rangifer Tarandus Tarandus) on the SEWARD PENINSULA, ALASKA a THESIS Presented to The ii APPLIED RANGE ECOLOGY OF REINDEER (Rangifer tarandus tarandus) ON THE SEWARD PENINSULA, ALASKA A THESIS Presented to the Faculty of the University of Alaska, Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Gregory L. Finstad, B.S. Fairbanks, Alaska May 2008 iii ABSTRACT Linking variation of the environment to animal production is key to successful range management. Ecological site descriptions (ESDs) are landscape units used by land managers for the grazing management of domestic reindeer (Rangifer tarandus tarandus) on the Seward Peninsula, Alaska. This study investigated the appropriateness of using ESDs for the grazing management of reindeer and explored the use of alternate units to link landscape variation to animal production. ESD composition of reindeer ranges varied across the Seward Peninsula, but there was no relationship to either animal production, estimated by June calf weight and cow/calf ratios, or reindeer serum and tissue mineral concentrations. I have shown that reindeer do not graze uniformly across ESDs, but are selective, both temporally and spatially, in what they consume. Reindeer diet selection and animal production appear to be driven by temporal variation in the nutritional characteristics of individual forage species. Biomass production and seasonal nutritional characteristics of forage species were used develop a computerized mapping program for reindeer producers to identify high quality grazing areas. Production among herds was related with identified forage sources of protein in the diet. Reindeer in herds with smaller June calves consumed more catkins, stems and leaf buds of shrubs in May, presumably to compensate for lower protein reserves. Diets of reindeer and June calf weight were significantly predicted by the δ15N ‰ differential between antler core (AC) and antler periosteum (AP). Although animal production was iv related to landscape stratification at the species level, data showed that weather patterns affected forage nutrient concentration and foraging accessibility at a landscape level. Body weight and growth of female calves and the proportion of yearlings lactating the next summer were positively correlated with spring temperature and negatively correlated with winter severity and summer temperature. Land managers are using ESDs to monitor and assess the impact of grazing, but I have shown that landscape variation described at a multitude of scales other than ESD are linked to grazing patterns and animal production. I concluded that these alternative landscape units be integrated into reindeer range management currently being practiced on the Seward Peninsula. v TABLE OF CONTENTS Page0B Signature Page.......................................................................................... ………………..i Title Page .......................................................................................... …………………….ii Abstract................................................................................................. …………………iii Table of Contents ...........................................................................………………………v List of Figures....................................................................................…………………….x List of Tables .......................................................................................... ………………xiv List of Abbreviations and Acronyms ............................................ …………………..xvii Acknowledgments ................................................................................ ………………..xix ~ Chapter46B 1: Introduction Rangifer1B in Alaska………………………………………………………………..1 The2B Seward Peninsula grazing system…………………………………………. 2 Introduction3B of reindeer herding.......................................................................... 4 Modern4B reindeer herding: transition to rangeland management……………..9 Present day range management of reindeer...................................................... 14 Physical5B characteristics of the Seward Peninsula grazing system................... 22 Climate6B ....................................................................................................... 23 Soils7B ............................................................................................................ 25 Vegetation8B .................................................................................................. 27 Literature Cited....................................................................................................32 vi Page9BU ~ Chapter 2: Nutritional mapping of grazing areas using nutrient and fiber profiles of reindeer forage plants of the Seward Peninsula, Alaska...............37 Abstract................................................................................................................. 37 Introduction.......................................................................................................... 39 Objectives................................................................................................... 45 Study Site.............................................................................................................. 45 Methods................................................................................................................. 47 Results................................................................................................................... 51 Discussion..............................................................................................................54 Literature Cited............................................................. ..................................... 61 Figures................................................................................................................... 65 Tables.................................................................................................................... 86 ~ Chapter10B 3: Influence of regional landscape diversity of the Seward Peninsula, Alaska on diet, tissue and serum mineral values and production of1B reindeer (Rangifer tarandus tarandus).......................................................... 97 Abstract................................................................................................................. 97 Introduction.......................................................................................................... 99 Objectives................................................................................................. 103 Study Site....................................................................................................…… 103 Methods.......................................................................................................…… 107 vii PageU Range descriptions................................................................................... 107 Diet composition...........................................................................……... 108 Serum and tissue sampling.......................................................................110 Animal productivity.................................................................................. 111 Results.........................................................................................................…… 112 Ecological site composition across ranges.............................................. 112 Diet composition...................................................................................... 113 Spring........................................................................................... 113 June.............................................................................................. 113 July...............................................................................................114 Fall...............................................................................................114 Winter...........................................................................................114 Serum mineral values...............................................................................115 Copper concentrations in liver................................................................ 116 Herd productivity..................................................................................... 116 Discussion............................................................................................................116 Literature Cited..................................................................................................133 Figures................................................................................................................. 140 Tables.................................................................................................................. 149 ~ Chapter 4: Landscape variation in diet and δ15N natural abundance in reindeer, Seward Peninsula, Alaska.........................................................156 Abstract............................................................................................................... 156 viii PageU Introduction........................................................................................................ 158 Objectives................................................................................................ 161 Study Site............................................................................................................ 161 Methods..............................................................................................................
Recommended publications
  • Forage Fishes of the Southeastern Bering Sea Conference Proceedings
    a OCS Study MMS 87-0017 Forage Fishes of the Southeastern Bering Sea Conference Proceedings 1-1 July 1987 Minerals Management Service Alaska OCS Region OCS Study MMS 87-0017 FORAGE FISHES OF THE SOUTHEASTERN BERING SEA Proceedings of a Conference 4-5 November 1986 Anchorage Hilton Hotel Anchorage, Alaska Prepared f br: U.S. Department of the Interior Minerals Management Service Alaska OCS Region 949 East 36th Avenue, Room 110 Anchorage, Alaska 99508-4302 Under Contract No. 14-12-0001-30297 Logistical Support and Report Preparation By: MBC Applied Environmental Sciences 947 Newhall Street Costa Mesa, California 92627 July 1987 CONTENTS Page ACKNOWLEDGMENTS .............................. iv INTRODUCTION PAPERS Dynamics of the Southeastern Bering Sea Oceanographic Environment - H. Joseph Niebauer .................................. The Bering Sea Ecosystem as a Predation Controlled System - Taivo Laevastu .... Marine Mammals and Forage Fishes in the Southeastern Bering Sea - Kathryn J. Frost and Lloyd Lowry. ............................. Trophic Interactions Between Forage Fish and Seabirds in the Southeastern Bering Sea - Gerald A. Sanger ............................ Demersal Fish Predators of Pelagic Forage Fishes in the Southeastern Bering Sea - M. James Allen ................................ Dynamics of Coastal Salmon in the Southeastern Bering Sea - Donald E. Rogers . Forage Fish Use of Inshore Habitats North of the Alaska Peninsula - Jonathan P. Houghton ................................. Forage Fishes in the Shallow Waters of the North- leut ti an Shelf - Peter Craig ... Population Dynamics of Pacific Herring (Clupea pallasii), Capelin (Mallotus villosus), and Other Coastal Pelagic Fishes in the Eastern Bering Sea - Vidar G. Wespestad The History of Pacific Herring (Clupea pallasii) Fisheries in Alaska - Fritz Funk . Environmental-Dependent Stock-Recruitment Models for Pacific Herring (Clupea pallasii) - Max Stocker.
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • Fishery Management Plan for Arctic Grayling Sport Fisheries Along the Nome Road System, 2001–2004
    Fishery Management Report No. 02-03 Fishery Management Plan for Arctic Grayling Sport Fisheries along the Nome Road System, 2001–2004 by Fred DeCicco April 2002 Alaska Department of Fish and Game Division of Sport Fish Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used in Division of Sport Fish Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications without definition. Weights and measures (metric) General Mathematics, statistics, fisheries centimeter cm All commonly accepted e.g., Mr., Mrs., alternate hypothesis HA deciliter dL abbreviations. a.m., p.m., etc. base of natural e gram g All commonly accepted e.g., Dr., Ph.D., logarithm hectare ha professional titles. R.N., etc. catch per unit effort CPUE kilogram kg and & coefficient of variation CV at @ 2 kilometer km common test statistics F, t, , etc. liter L Compass directions: confidence interval C.I. meter m east E correlation coefficient R (multiple) north N metric ton mt correlation coefficient r (simple) milliliter ml south S covariance cov millimeter mm west W degree (angular or ° Copyright temperature) Weights and measures (English) Corporate suffixes: degrees of freedom df cubic feet per second ft3/s Company Co. divided by ÷ or / (in foot ft Corporation Corp. equations) gallon gal Incorporated Inc. equals = inch in Limited Ltd. expected value E mile mi et alii (and other et al. fork length FL ounce oz people) greater than > O pound lb et cetera (and so forth) etc. greater than or equal to quart qt exempli gratia (for e.g., harvest per unit effort HPUE example) yard yd less than < id est (that is) i.e., ? less than or equal to latitude or longitude lat.
    [Show full text]
  • Pamphlet to Accompany Scientific Investigations Map 3131
    Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data By Alison B. Till, Julie A. Dumoulin, Melanie B. Werdon, and Heather A. Bleick Pamphlet to accompany Scientific Investigations Map 3131 View of Salmon Lake and the eastern Kigluaik Mountains, central Seward Peninsula 2011 U.S. Department of the Interior U.S. Geological Survey Contents Introduction ....................................................................................................................................................1 Sources of data ....................................................................................................................................1 Components of the map and accompanying materials .................................................................1 Geologic Summary ........................................................................................................................................1 Major geologic components ..............................................................................................................1 York terrane ..................................................................................................................................2 Grantley Harbor Fault Zone and contact between the York terrane and the Nome Complex ..........................................................................................................................3 Nome Complex ............................................................................................................................3
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • <I>Equisetum Giganteum</I>
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2009 Ecophysiology and Biomechanics of Equisetum Giganteum in South America Chad Eric Husby Florida International University, [email protected] DOI: 10.25148/etd.FI10022522 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Husby, Chad Eric, "Ecophysiology and Biomechanics of Equisetum Giganteum in South America" (2009). FIU Electronic Theses and Dissertations. 200. https://digitalcommons.fiu.edu/etd/200 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida ECOPHYSIOLOGY AND BIOMECHANICS OF EQUISETUM GIGANTEUM IN SOUTH AMERICA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Chad Eric Husby 2009 To: Dean Kenneth Furton choose the name of dean of your college/school College of Arts and Sciences choose the name of your college/school This dissertation, written by Chad Eric Husby, and entitled Ecophysiology and Biomechanics of Equisetum Giganteum in South America, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Bradley C. Bennett _______________________________________ Jack B. Fisher _______________________________________ David W. Lee _______________________________________ Leonel Da Silveira Lobo O'Reilly Sternberg _______________________________________ Steven F. Oberbauer, Major Professor Date of Defense: March 24, 2009 The dissertation of Chad Eric Husby is approved.
    [Show full text]
  • Spanning the Bering Strait
    National Park service shared beringian heritage Program U.s. Department of the interior Spanning the Bering Strait 20 years of collaborative research s U b s i s t e N c e h UN t e r i N c h UK o t K a , r U s s i a i N t r o DU c t i o N cean Arctic O N O R T H E L A Chu a e S T kchi Se n R A LASKA a SIBERIA er U C h v u B R i k R S otk S a e i a P v I A en r e m in i n USA r y s M l u l g o a a S K S ew la c ard Peninsu r k t e e r Riv n a n z uko i i Y e t R i v e r ering Sea la B u s n i CANADA n e P la u a ns k ni t Pe a ka N h las c A lf of Alaska m u a G K W E 0 250 500 Pacific Ocean miles S USA The Shared Beringian Heritage Program has been fortunate enough to have had a sustained source of funds to support 3 community based projects and research since its creation in 1991. Presidents George H.W. Bush and Mikhail Gorbachev expanded their cooperation in the field of environmental protection and the study of global change to create the Shared Beringian Heritage Program.
    [Show full text]
  • Digital Data for the Preliminary Bedrock Geologic Map of The
    Open-File Report 2009-1254 U.S. Department of the Interior Sheet 2 of 2 U.S. Geological Survey Pamphlet accompanies map '02°761 '01°761 '00°761 LIST OF METAMORPHIC-TECTONIC ELEMENTS HIGH GRADE METAMORPHIC AND ASSOCIATED O<t Qs Ol Nome Complex, west-central – Weakly foliated metasedimentary O<l O<l IGNEOUS ROCKS – Amphibolite and granulite-facies O<l O<l Ol Ols Ols YORK TERRANE – Late Proterozoic (?) and Paleozoic sedimentary and unfoliated metaigneous rocks that retain relict primary features; and metasedimentary rocks and minor Late Cretaceous tin-bearing mineral assemblages in mafic rocks formed at pumpellyite-actinolite, metamorphic rocks and associated Cretaceous plutons; penetratively Qs greenschist, and blueschist facies (one locality) deformed metasedimentary and metaigneous schist and gneiss with Oal granites; dominantly carbonate and siliciclastic lithologies, in which Oal primary features are generally retained; fine-grained Nome Complex, eastern – Penetratively deformed and complex metamorphic histories; aluminum-rich lithologies show Ol early development of kyanite-stable mineral assemblages succeeded Ol 17 metasedimentary rocks are weakly foliated. Metamorphic and recrystallized schists with ductile fabrics; protolith packages and Ol Ols 165°00' by sillimanite-stable, lower-pressure assemblages. Lithologies rich in O<p Ols thermal history variable from unit to unit, and generally lower grade metamorphic fabrics identical to Nome Complex in central Seward Oal Qs Peninsula; mineral assemblages in most of the area are characteristic iron and aluminum retain early, relatively high pressure Ktg than Nome Complex. Tin granites intruded in shallow crustal Ols Ol aluminosilicate plus orthoamphibole assemblages (>5kb) that are Cape Espenberg settings. The generally brittle shallow and steeply-dipping structures of greenschist facies, but slightly higher grade assemblages occur in Ol the vicinity of Kiwalik Mountain.
    [Show full text]
  • The PAYSTREAK Volume 12, No
    The PAYSTREAK Volume 12, No. 2, Fall 2010 The Newsletter of the Alaska Mining Hall of Fame Foundation (AMHF) In this issue: AMHF New Inductees Page 1 Induction Ceremony Program Page 2 Introduction and Acknowledgements Page 3 Previous AMHF Inductees Pages 4 - 10 New Inductee Biographies Pages 10 - 23 Distinguished Alaskans Aid Foundation Page 24 Alaska Mining Hall of Fame Directors and Officers Page 24 Alaska Mining Hall of Fame Foundation New Inductees AMHF Honors Pioneers Important to the Seward Peninsula Gold Dredging Industry Nicholas B. and Evinda S. Tweet: It is difficult to name any couple in Alaska mining history that has had more longevity and perseverance than Nicholas B. and Evinda S. Tweet. In marriage, they formed a team that created a remarkably stable, family-owned firm, N.B. Tweet and Sons, which has mined gold in Alaska for 110 years. Nicholas and Evinda mined and lived in several placer mining camps, worked graphite claims, operated gold dredges, and inspired their descendants to continue the placer mining lifestyle. Both Evinda and Nick died at the family mining camp, near Taylor, north of Nome. In 2010, N.B. Tweet and Sons operated the only bucketline stacker gold dredge in North America. Carl S. (left) and Walter A. (right) Glavinovich: Two Croatian (Yugoslavian)-born brothers who, collectively, devoted more than one-hundred years of their lives to the prospecting, deciphering, drilling, thawing, and dredging of the Nome, Alaska, placer gold fields. Most of these years were in the service of one company, the U.S. Smelting, Refining, and Mining Company (USSR&M) or its direct affiliate, the Hammon Consolidated Gold Fields.
    [Show full text]
  • Native Plant List, Pdf Format
    Appendix A: City of Bellingham Native Plant List December 2020 The City of Bellingham Native Plant List (Figure 1) includes plant species that are native to Bellingham watersheds (Figure 2). The native plant list applies to all habitat types, including riparian, upland, and wetland areas. The list was developed using specimen records from the Consortium of Pacific Northwest Herbaria and Bellingham plant checklists curated by Don Knoke, a volunteer at the University of Washington Herbarium. To improve plant establishment and protect the genetic resources of our local plant populations, the City recommends using native plants that were grown from seeds or cuttings collected from the Puget Trough Ecoregion (Figure 3). Obtaining native plants grown from material collected from the Puget Trough Ecoregion will help ensure the plants are adapted to the unique environmental conditions of Bellingham watersheds and are genetically similar to our local plant populations. A more thorough discussion of the rational and selection process is provided in the City of Bellingham Public Works Department Native Plant Materials Selection Guidelines, December 2020. Figure 1. City of Bellingham Native Plant List Ferns Common Name Scientific Name Family Bracken fern Pteridium aquilinum var. pubescens Dennstaedtiaceae Bristle-like quillwort Isoetes tenella Isoetaceae Common horsetail Equisetum arvense Equisetaceae Deer fern Struthiopteris spicant (Blechnum spicant) Blechnaceae Dream fern Aspidotis densa Pteridaceae Giant horsetail Equisetum telmateia ssp. braunii
    [Show full text]
  • M., 2019 Floristic Study of a Protected Wetland from Borsaros-Sancraieni, Harghita County, Romania
    Floristic study of a protected wetland from Borsaros-Sancraieni, Harghita County, Romania 1Emilian Pricop, 2Paul N. Filip, 3Bogdan-Mihai Negrea 1 Natural Sciences Museum of Piatra Neamţ - Neamţ County Museum Complex, Piatra Neamţ, Neamţ, Romania; 2 Faculty of Biology, “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania; 3 ”Danube Delta” National Institute for Research and Development, Department of Ecological Restoration and Species Recovery, Tulcea, Romania. Corresponding author: E. Pricop, [email protected] Abstract. In this paper we intend to present a brief floristic survey and the old literature data over an interesting area in the Harghita County, Romania, Borsaros-Sancraieni swamp reserve, area protected since the beginning of 1939. Important personal scientific observations are highlighted. This paper was written specially to reveal the diversity of vascular flora from this area and the surroundings, and the risks which treat this bog. We confirm the presence of main characteristic species of this swamp type and complete the vascular flora species list. This area was mentioned as an important refuge of some rare glacial relict plant species of main conservation importance as: Betula humilis Schrank, Drosera anglica Hudson, Ligularia sibirica L. and Saxifraga hirculus L. Also, we would like to signal a significant change of the initial habitat, for which the area was designated a protected area, due in particular to the anthropic activity but also the lack of involvement in the conservation of nature at local and regional level. Key Words: vascular flora, swamp reserve, Betula humilis Schrank, Drosera anglica Hudson, Ligularia sibirica L., Saxifraga hirculus L., species list, habitat loss, adventive species.
    [Show full text]
  • Climate-Ocean Effects on AYK Chinook Salmon
    SAFS-UW-1003 2010 Arctic Yukon Kuskokwim (AYK) Sustainable Salmon Initiative Project Final Product1 Climate-Ocean Effects on AYK Chinook Salmon Chukchi Sea by Katherine W. Myers2, Robert V. Walker2, Nancy D. Davis2, Janet L. Armstrong2, Wyatt J. Fournier2, Nathan J. Mantua2, and Julie Raymond-Yakoubian 3 2High Seas Salmon Research Program, School of Aquatic & Fishery Sciences (SAFS), University of Washington (UW), Box 355020, Seattle, WA 98195-5020, USA 3Kawerak, Inc., PO Box 948, Nome, AK 99762, USA November 2010 1Final products of AYK Sustainable Salmon Initiative (SSI) research are made available to the Initiatives partners and the public in the interest of rapid dissemination of information that may be useful in salmon management, research, or administration. Sponsorship of the project by the AYK SSI does not necessarily imply that the findings or conclusions are endorsed by the AYK SSI. ABSTRACT A high-priority research issue identified by the Arctic-Yukon-Kuskokwim (AYK) Sustainable Salmon Initiative (SSI) is to determine whether the ocean environment is a more important cause of variation in the abundance of AYK Pacific salmon (Oncorhynchus spp.) populations than marine fishing mortality. At the outset of this project, however, data on ocean life history of AYK salmon were too limited to test hypotheses about the effects of environmental conditions versus fishing on marine survival. Our goal was to identify and evaluate life history patterns of use of marine resources (habitat and food) by Chinook salmon (O. tshawytscha) and to explore how these patterns are affected by climate-ocean conditions, including documentation of local traditional knowledge (LTK) of this high-priority issue.
    [Show full text]