Patent 'Office

Total Page:16

File Type:pdf, Size:1020Kb

Patent 'Office Patented Mar. 16, 1926. _ 1,576,663 ‘UNITED STATES PATENT ‘OFFICE. GUY LEONARD, OI‘ BALTIMORE, MARYLAND. I I STENCIL SHEET. 80 Drawing. Application ma my 11, 1925. Serial a... cam. To all whom it may concern: rates from the coated sheet, the weight of Be it known that I, GUY LEONARD, a sub the shellac in the dried coating may ?nally be somewhat less than the weight of the ject of the King of Great Britain residing 60 ' in Baltimore, in the county of l3altimore triacetin. ' Triacetin and shellac being mu and State of Maryland, have invented cer-. tually soluble in alcohol, or in- ether, or tain new and useful Improvements in Sten acetone, or any of the common solvents for cil Sheets, ‘of which the following is a speci shellac, the result is therefore a homogeneous ?cation. coating, u n evaportion of the solvents at This invention relates to stencil-sheets for the sheet- rying operation. 10 typewriting and stylographic'work. An added softening or tempering ingredi The principal object of the invention is cut is diethylphthalate, of which ?ve parts to produce at low cost an efficient, strong, by weight may be used. 'The- diethylphtha durable and economical stencil-sheet, which late is also soluble in ‘alcohol or .the other 7'0 . does not crack and will withstand crum common solvents, thus making with ‘the 15 pling and rough handling, and which is las shellac and triacetin a homogeneous, dry coating upon the evaporation of the alcohol tic and pliable and can be stenciled wit ‘out , " or solvent. dampening, but which will yield far more While the speci?ed proportions of the copies than an ordinary wax stencil-sheet. 75 and which will cause the ink to be deposited various ingredlents give excellent results, 20 sparingly on the stencil-copies, thus improv still- the proportions may be varied within ing the‘ product and economizing ink and the scope of the invention. There is also also avoiding the necessity of blotting the rmissible some latitude of variation in the ingredients themselves, as, for example, stencil-copies or of using anti-offset devices, 80 and which will preserve its good qualities , glycerin may be used as a substitute soften both before and after empressing the sten ing agent, or a suitable oil, or‘, a suitable cil-characters thereon. grease. Or the softenin agent dieth l . The raw- sheet or base of the stencil-sheet phthalate may be modi?ed y ~glycerin, or y is loose-?bred paper, such as Yoshino, which a suitable oil or grease.' If deslred, a good is coated by using a liquid that includes a substitutev softening agent can be made of large proportion, say twenty parts by palm oil and stearic acid (or oleic acid) in weight, of a 25 per cent shellac solution in the proportionsv of about 3 parts palm oil methyl‘ alcohol, although the strength of and about 2 parts stearic acid. When oil or this solution’ may be varied. The shellac stearic acid or oleic acid is. employed in should be a good quality orange shellac. softening,'su?icient heat should be applied 35 However, shellac solutions of diiferent to secure a proper-solution. qualities. and grades may be employed; The coating preparation. can be colored and‘ ‘the proportion of shellac solu with any dye that is soluble in alcohol. or tion used in the herein-disclosed formula in a common solvent of the solution. maybe varied to suit. The strength of the‘ The coating solution may be preparedv at 40 shellac solution itself may also. be varied.‘ ordinary room temperature, preferably by ~ It will be understood that for dissolvingthe ?rst mixing the liquid triacetin and di shellac, any suitable ‘ alcohol, acetone or ethylphthalate,~and then adding the shellac . amylacetate may be used. This solution is solution, in any suitable vessel, and then if desired adding a dye. This bath‘ may be 100. temporary, inasmuch as the alcohol‘ eventu kept at room temperature, and in it the 45, ally dries out of the coating'upon the sten vYoshino paper-sheets may be immersed; or- . oil-sheet‘.v _- - A With the shellac solution is used a propor the sheets may begust ?oated upon this coat ing bath _or_ hqui . The excess of thecoat tion of about eight parts by weight of a. ing liquid may be'removed from the sheet glycerol‘ fatty acid 7 ester, ,which may be by drawing it over a straight edge or wire 6o. triacetin, by the aid of which it is designed or other suitable device, and the sheetmay to secure great and permanent pliability and be hung up to dry. There is su?icient elasticity in the stencil-sheet. The triacetin eva oration of the alcohol in from twenty is a lasti?er, or renders the coating more to t irty minutes, to permit handling of the no plast1c, or gives‘ it a' gummy quality. The sheet.» When dry, the sheet is- ready forv 55 shellac and triacetin‘ form a mixture or me-' chanical compound. Since alcohol-evapo use lathe typewriting machine. 'Fortranss. 1,570,008 ' portation, storage and handling, sheets “- of oil paper may be packed between the stencil‘ pli'ko?'setting. There is a decided saving of sheets, whose tackiness, if present, is hardly > The invention isfnot limited to the pro~ appreciable. The oil sheet is preferably re portions given; andwithin the scope of the moved before inserting the stencil-sheet in mvention various substitutes or equivalents the typewriter. Tackiness may be reduced ,may be used ‘for the binding gum, the ester J or eliminated by diminishing the proportion ‘and the softener, as will be understood by ‘. of shellac. The shellac, as well as being im those skilled’in chemistry. pervious to stenciling ink, binds or holds the ' I claim: ' in other ingredients together. Other binding 1. A stencil-sheet of loose-?bered paper agents than shellac may be used, and ,con— coated with a solution of shellac, triacetin duce to toughness, durability and ink-resist and diethylphthalate. -_ ' ‘ ing qualities of the stencil-sheet». The . 2.- A stencil-sheet having a base of loosej trlacetin prevents the shellac from becoming ?bered paper provided with a dried 55 15 brittle. The diethylphthalate softens or homogeneous coating having by weight tempers the coating. - about ?ve parts of shellac, eight parts of The typewriter-types make cleaner and triacetin, and ?ve parts of diethylphthalate. narrower cuts in the‘ stencil than usual here 3. A paper-coating bath including twenty tofore, indicating the quality of elasticity parts by weight of twenty-?ve per cent 00 imparted by the triacetin. The stencil shellac solution in methyl alcohol, eight sheet is highly economical of ink durin the parts by weight of triacetin, and ?ve parts operation of producing stencil-copies t ere-' by weight of diethylphthalate. from. There is no need to blot the stencil 4. A loose-?bered paper provided with a copies or to interleave sheets therewith, or homogeneous coating of a glycerol vfatty to use other anti~oifset devices. The stencil acid ester, diethylphthalate, and a binding copies can be handled at once, without agent. _ danger of smearing the ink thereon. The '5. The process of dissolving shellac in . stencil-sheet preserves its original form not‘ alcohol, mixing in the solution glycerol fatty withstanding wrinkling, crumpling and acid ester, and adding to the solution di 70 rough handling; it is-elastic, and does not permanently stretch, nor do the ?bres of ethylp‘hthalate.6.- he process of dissolving shellac in the Yoshino tissue base loosen or pullapart. alcohol, mixing in the solution glycerol fatty It is excellent for stylographic work as well acid ester, and addin to the solution di as typcwriting. ' . ' ethylphthalate and a dye. ‘ - 76 In making copies from the typed or other ‘ 7. An ink-proof coating bath for paper, wise impressed stencil, very much less ink having twenty parts by' weight of a than heretofore reaches the stencil-copy, and twenty-?ve per cent solution of orange hence the inked characters do not spread shellac in methyl alcohol, about ei ht parts thereon and become unsightly, nor is blot by weight of triacetin, and about ?ve parts 80 tin necessary, but the copies can be handled by weight of diethylphthalate. ' rig t away, or piled up, without smearing GUY LEONARD.‘ .
Recommended publications
  • Stearic Acid Acceptance Criteria: 194–212 Portions of This Monograph That Are National USP Text, and • C
    Stage 6 Harmonization Official May 1, 2016 Stearic 1 L . = molecular weight of potassium hydroxide, Mr 56.11LNF34 Stearic Acid Acceptance criteria: 194±212 Portions of this monograph that are national USP text, and • C. The retention times of the major peaks of the Sample are not part of the harmonized text, are marked with solution correspond to those of the Standard solution, as N symbols ( .N) to specify this fact. obtained in the Assay. Octadecanoic acid; ASSAY Stearic acid [57-11-4]. • PROCEDURE DEFINITION Boron trifluoride±methanol solution: 140 g/L of bo- ron trifluoride in methanol Sample solution: Dissolve 100 mg of Stearic Acid in a Change to read: small conical flask fitted with a suitable reflux attach- ment with 5 mL of Boron trifluoride±methanol solution. Mixture consisting of stearic (octadecanoic) acid (C18H36O2; Boil under reflux for 10 min. Add 4.0 mL of heptane Mr, 284.5) and palmitic (hexadecanoic) acid (C16H32O2; through the condenser, and boil again under reflux for Mr, 256.4) obtained from fats or oils of vegetable or 10 min. Allow to cool. Add 20 mL of a saturated solu- animal origin. tion of sodium chloride. Shake, and allow the layers to Content: separate. Remove about 2 mL of the organic layer, and dry it over 0.2 g of anhydrous sodium sulfate. Dilute 1.0 mL of this solution with heptane to 10.0 mL. Stearic acid: 40.0%±60.0%. Sum of the Standard solution: Prepare as directed in the Sample contents of stearic acid and palmitic acids: solution using 50 mg of USP Stearic Acid RS and 50 mg Stearic acid 50 NLT 90.0%.
    [Show full text]
  • Effects of Butter Oil Blends with Increased Concentrations of Stearic, Oleic and Linolenic Acid on Blood Lipids in Young Adults
    European Journal of Clinical Nutrition (1999) 53, 535±541 ß 1999 Stockton Press. All rights reserved 0954±3007/98 $12.00 http://www.stockton-press.co.uk/ejcn Effects of butter oil blends with increased concentrations of stearic, oleic and linolenic acid on blood lipids in young adults CC Becker1, P Lund1, G Hùlmer1*, H Jensen2 and B SandstroÈm2 1Department of Biochemistry and Nutrition, Center for Food Research, Technical University of Denmark, Denmark; and 2Research Department of Human Nutrition, Center for Food Research, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark Objective: The aim of this present project was to evaluate a more satisfactory effect on plasma lipoprotein pro®le of spreads based on dairy fat. Design: This study was designed as a randomised cross-over experiment with a three-week treatment separated by a three-week wash-out period. Sixty ®ve grams of the fat content of the habitual diets was replaced by either butter=grapeseed oil (90 : 10) (BG); butter oil and low erucic rapeseed oil (65 : 35) (BR) or butter blended in a 1 : 1 ratio with a interesteri®ed mixture of rapeseed oil and fully hydrogenated rapeseed oil (70 : 30) (BS). Subjects: Thirteen healthy free-living young men (age 21±26 y) ful®lled the study. Interventions: At the beginning and end of each diet period two venous blood samples were collected. Triacylglycerol and cholesterol concentrations in total plasma and VLDL, LDL, IDL and HDL fractions were measured, as were apo A-1 and apo B concentrations. Fatty acid composition of plasma phospholipids, plasma cholesterol ester and platelets was also determined.
    [Show full text]
  • Esterifikasi Gliserol Dari Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis Zeolit Alam
    Esterifikasi Gliserol Dari Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis Zeolit Alam Nirmala Sari 1, Zuchra Helwani 2, dan Hari Rionaldo3 Laboratorium Teknologi Oleokimia Program Studi Teknik Kimia S1, Fakultas Teknik Universitas Riau Kampus Binawidya Km. 12,5 Simpang Baru Panam, Pekanbaru 28293 *Email : [email protected] ABSTRACT Glycerol is a by-product of biodiesel production from transesterification reaction generated 10% volume product. The increase of biodiesel production is followed by the increase of the glycerol as by product. Glycerol when esterified with acetic acid formed Triacetin. Triacetin has many uses for food, non-food and additives in biofuel feedstock that is renewable and environmentally friendly. In this study will be make Triacetin from reaction esterification of crude glycerol purified with acetic acid glacial and using natural zeolite catalyst has been activated. Making triacetin performed with a three-neck flask equipped with a condenser, heating mantle, thermometer and magnetic stirred at 100 ° C, 100 mesh size catalyst and reaction time for 4 hours. Process of qualitative analysis using FT-IR instrument has detected the exixtence of Triacetin product. The variables are varied ratio reactant of glycerol and acetic acid, and the concentration catalyst. The highest conversion obtained for 90.02% in reactan ratio mol glycerol and acetic acid 1: 7, catalyst concentration of 3% to weight of acetic acid. Comparison of reagents give real effect to the conversion of glycerol into Triacetin, while the catalyst concentration does not give a significant effect on glycerol conversion be Triacetin. Keywords: acetic acid, esterification, glycerol, Triacetin 1. Pendahuluan Gliserol merupakan produk samping gliserol ester maleat resin.
    [Show full text]
  • Oleochemicals Series
    OLEOCHEMICALS FATTY ACIDS This section will concentrate on Fatty Acids produced from natural fats and oils (i.e. not those derived from petroleum products). Firstly though, we will recap briefly on Nomenclature. We spent some time clarifying the structure of oleochemicals and we saw how carbon atoms link together to form carbon chains of varying length (usually even numbered in nature, although animal fats from ruminant animals can have odd-numbered chains). A fatty acid has at least one carboxyl group (a carbon attached to two oxygens (-O) and a hydrogen (-H), usually represented as -COOH in shorthand) appended to the carbon chain (the last carbon in the chain being the one that the oxygen and hydrogen inhabit). We will only be talking about chains with one carboxyl group attached (generally called “monocarboxylic acids”). The acids can be named in many ways, which can be confusing, so we will try and keep it as simple as possible. The table opposite shows the acid designations as either the “length of the carbon chain” or the “common name”. While it is interesting to know the common name for a particular acid, we will try to use the chainlength in any discussion so you do not have to translate. Finally, it is usual to speak about unsaturated acids using their chainlength suffixed with an indication of the number of double bonds present. Thus, C16=1 is the C16 acid with one double bond; C18=2 is the C18 acid with two double bonds and so on. SELECTING RAW MATERIALS FOR FATTY ACID PRODUCTION In principle, fatty acids can be produced from any oil or fat by hydrolytic or lipolytic splitting (reaction with water using high pressure and temperature or enzymes).
    [Show full text]
  • Triglyceride Transesterification in Heterogeneous Reaction System with Calcium Oxide As Catalyst
    Rev. Fac. Ing. Univ. Antioquia N.° 57 pp. 7-13. Enero, 2011 Triglyceride transesterification in heterogeneous reaction system with calcium oxide as catalyst Transesterificación de triglicéridos en el sistema de reacción heterogénea con óxido de calcio como catalizador Mónica Becerra Ortega, Aristóbulo Centeno Hurtado, Sonia Azucena Giraldo Duarte* Centro de Investigaciones en Catálisis (CICAT). Escuela de Ingeniería Química. Universidad Industrial de Santander (UIS). Carrera 27 Calle 9. Bucaramanga. Colombia (Recibido el 03 de febrero de 2010. Aceptado el 15 de octubre de 2010) Abstract In this work, the behavior of the CaO as a potential catalyst for the transesterification of triglyceride towards biodiesel production was studied. The effect of the alcohol type, the ratio of alcohol/triacetin, the amount of catalyst, and the chain length of triglyceride on the catalytic behavior of CaO was analyzed. Total conversion was obtained at room temperature with a 6:1 molar ratio of methanol to triacetin over 1% of CaO, after 1 h. It was demonstrated that the whole reaction occurs in heterogeneous phase. During five reaction cycles the CaO maintained a high catalytic activity, showing its good stability. Additionally, it was established that the length of the triglyceride used influenced the transesterification reaction yield due to the steric hindrances and diffusional limitations in the fluid phase. ----- Keywords: Biodiesel, triacetin, basic catalysis, triolein Resumen En este trabajo se estudió el comportamiento del CaO como potencial catalizador en la transesterificación de trigliceridos para la producción de biodiesel. Se analizó el efecto del tipo de alcohol, la relación molar alcohol/triacetina, la cantidad de catalizador y el tamaño de la cadena del triglicérido sobre su comportamiento catalítico.
    [Show full text]
  • Fatty Acids: Structures and Introductory Article Properties Article Contents
    Fatty Acids: Structures and Introductory article Properties Article Contents . Introduction Arild C Rustan, University of Oslo, Oslo, Norway . Overview of Fatty Acid Structure . Major Fatty Acids Christian A Drevon, University of Oslo, Oslo, Norway . Metabolism of Fatty Acids . Properties of Fatty Acids Fatty acids play a key role in metabolism: as a metabolic fuel, as a necessary component of . Requirements for and Uses of Fatty Acids in Human all membranes, and as a gene regulator. In addition, fatty acids have a number of industrial Nutrition uses. Uses of Fatty Acids in the Pharmaceutical/Personal Hygiene Industries Introduction doi: 10.1038/npg.els.0003894 Fatty acids, both free and as part of complex lipids, play a number of key roles in metabolism – major metabolic fuel (storage and transport of energy), as essential components subsequent one the b carbon. The letter n is also often used of all membranes, and as gene regulators (Table 1). In ad- instead of the Greek o to indicate the position of the double dition, dietary lipids provide polyunsaturated fatty acids bond closest to the methyl end. The systematic nomencla- (PUFAs) that are precursors of powerful locally acting ture for fatty acids may also indicate the location of double metabolites, i.e. the eicosanoids. As part of complex lipids, bonds with reference to the carboxyl group (D). Figure 2 fatty acids are also important for thermal and electrical outlines the structures of different types of naturally insulation, and for mechanical protection. Moreover, free occurring fatty acids. fatty acids and their salts may function as detergents and soaps owing to their amphipathic properties and the for- Saturated fatty acids mation of micelles.
    [Show full text]
  • April 9, 2020 Replacement of Primex Brand Hydrogenated Vegetable
    April 9, 2020 Replacement of Primex Brand Hydrogenated Vegetable Shortening In June of 2018 the FDA banned the use of trans fats in human foods. Due to the ban, Envigo was no longer able to source Primex brand hydrogenated vegetable oil (HVO) containing trans fats. Beginning on April 11th of 2018, Primex was replaced with an USP grade HVO made to a food-grade standard that has a similar texture and fatty acid profile (see table). Manufacturing tests revealed no appreciable differences in physical qualities of finished diets. Although diet numbers did not change, you may have noticed an updated diet title and ingredient description on the diet datasheet. Depending on your research goals and desire for relevance to human diets, you may wish to use a source of HVO without trans fats such as Crisco. Crisco is a proprietary HVO with minimal trans fats (see table). Envigo also offers several popular obesity inducing diets with alternate fat sources like lard or milkfat that may be suitable for your research. Contact a nutritionist to discuss alternate options. Comparison of the fatty acid profile of Primex, Envigo Teklad’s Replacement HVO and Crisco. Fatty Acids, % Primex HVO1 Replacement HVO2 Crisco3 Trans fatty acids 23.9 - 36.1 26 - 35.6 0.6 Saturated fatty acids 25.3 - 27.1 22.6 - 29.3 25.8 Monounsaturated fatty acids 25.3 - 33.3 24.8 - 32.6 18.7 Polyunsaturated fatty acids 5.6 - 9.0 7.1 - 9.4 49.5 16:0 palmitic acid 14.0 - 17.4 11.0 - 14.8 16.9 18:0 stearic acid 9.1 - 11.5 10.7 - 14.2 9.6 18:1 n9T elaidic acid 22.2 - 34.7 24.4 - 32.6 0 18:1 n9C oleic acid 16.6 - 26.5 17.2 - 25.7 18.1 18:1 n7C vaccenic acid 2.2 - 2.4 2.0 - 2.2 1.2 18:1 other cis isomers 6.3 - 7.8 6.1 - 6.7 0 18:2 n6 linoleic acid 5.8 - 9.1 7.0 - 9.2 44.8 18:2 other trans isomers 3.2 - 4.0 3.5 - 5.0 0.5 18:3 n3 linolenic acid 0.3 - 0.5 0.1 - 0.3 6.1 19:0 nonadecanoic acid 0.6 - 0.7 0.4 - 0.7 0 20:0 arachidic acid 0.3 - 0.4 0.4 0.4 1Range for Primex HVO represents the average ± 1 standard deviation (soybean and cottonseed or palm oil; n = 4).
    [Show full text]
  • 2013 Annual Meeting Abstracts Biotechnology
    2013 Annual Meeting Abstracts Biotechnology MONDAY AFTERNOON BIO 1.1/PHO 1: Polar Lipids: Chemistry, Technology, and Applications Chair(s): X. Xu, Wilmar Global R&D Center, China; Aarhus University, Denmark; M. Ahmad, Jina Pharmaceuticals Inc., USA Enzymatic "green" Preparation of Sugar-fatty Acid Esters D. Hayes(1) (1)University of Tennessee, United States of America Saccharide-fatty acid esters are an emerging category of biobased surfactants prepared entirely from renewable resources that are used as emulsifiers in foods, cosmetics, and pharmaceuticals, and possess anticancer and insecticidal properties. Typically, the esters are prepared chemically under harsh condition: temperatures near 200 C, employment of solvents, etc., which can cause undesirable side-reactions and produce waste products. Our group has been investigating the use of lipases and novel bioreactor system design to prepare sugar esters under solvent-free conditions and relatively low temperature: ~65 C. Using a stoichiometric feed of saccharide and fatty acid, our approach achieves 90-95% pure ester on a 10-30 gram scale, which, due to the absence of excess reactants and solvent, will require little or no further downstream purification to achieve industrial specifications. The presentation will provide an overview of our recent work, including an evaluation of its physical properties. Deep Eutectic Solvents: new Opportunities for Lipase-catalyzed Reactions E. DURAND(1), J. LECOMTE(2), B. BAREA(3), P. VILLENEUVE(4) (1)CIRAD, UMR IATE, France (2)CIRAD, UMR IATE, France (3)CIRAD, UMR IATE, France (4)CIRAD, UMR IATE, France In recent years, researchers focused on finding green alternative media to organic solvents for enzyme-catalyzed reactions.
    [Show full text]
  • About Trans Fat and Partially Hydrogenated Oils Q. What Is Trans
    About Trans Fat and Partially Hydrogenated Oils Q. What is trans fat? A. Most trans fat is a monounsaturated (one double bond) fatty acid. The shape of trans-fat molecules is more like cholesterol-raising saturated fat than a typical monounsaturated fatty acid. Perhaps for that reason, it increases cholesterol levels in blood and increases the risk of heart disease. Q. Where does trans fat come from? A. According to the Food and Drug Administration (FDA), in 1994-96 we consumed about 5.6 grams of trans fat per day. Most of that trans fat comes from the 40,000-plus foods that contain partially hydrogenated vegetable oil. Those include many stick margarines, biscuits, pastries, cookies, crackers, icings, and deep-fried foods at restaurants. Because Frito-Lay, margarine producers, and some other companies recently stopped using (or cut back on the use of) partially hydrogenated oils, we now are consuming a little less trans fat. About one-fifth (1.2 g) of the trans fat came from natural sources, especially beef and milk products (bacteria in cattle produce trans fat that gets into meat and milk). A little more occurs naturally in vegetable oils and forms when vegetable oils are purified. Q. How is partially hydrogenated oil made? A. To convert soybean, cottonseed, or other liquid oil into a solid shortening, the oil is heated in the presence of hydrogen and a catalyst. That hydrogenation process converts some polyunsaturated fatty acids to monounsaturated and saturated fatty acids. It also converts some monounsaturated fatty acids to saturated fatty acids. Thus, a healthful oil is converted into a harmful one.
    [Show full text]
  • Phase Diagrams of Fatty Acids As Biosourced Phase Change Materials for Thermal Energy Storage
    applied sciences Article Phase Diagrams of Fatty Acids as Biosourced Phase Change Materials for Thermal Energy Storage Clément Mailhé 1,*, Marie Duquesne 2 , Elena Palomo del Barrio 3, Mejdi Azaiez 2 and Fouzia Achchaq 1 1 Université de Bordeaux, CNRS, I2M Bordeaux, Esplanade des Arts et Métiers, F-33405 Talence CEDEX, France; [email protected] 2 Bordeaux INP, CNRS, I2M Bordeaux, Esplanade des Arts et Métiers, F-33405 Talence CEDEX, France; [email protected] (M.D.); [email protected] (M.A.) 3 CIC EnergiGUNE, Parque Tecnológico de Álava, Albert Einstein, 48. Edificio CIC, 01510 Miñano, Álava, Spain; [email protected] * Correspondence: [email protected] Received: 15 February 2019; Accepted: 6 March 2019; Published: 14 March 2019 Featured Application: A potential application of this work consists of accelerating the screening step required for the study and selection of promising binary systems of phase change materials for thermal energy storage at medium temperature. Abstract: Thermal energy storage is known as a key element to optimize the use of renewable energies and to improve building performances. Phase change materials (PCMs) derived from wastes or by-products of plant or animal oil origins are low-cost biosourced PCMs and are composed of more than 75% of fatty acids. They present paraffin-like storage properties and melting temperatures ranging from −23 ◦C to 78 ◦C. Therefore, they could be appropriate for latent heat storage technologies for building applications. Although already studied, a more detailed exploration of this class of PCMs is still required. In this frame, a screening of fatty acids and of their related binary systems must be performed.
    [Show full text]
  • Chemical Kinetics for Synthesis of Triacetin from Biodiesel Byproduct
    www.ccsenet.org/ijc International Journal of Chemistry Vol. 4, No. 2; April 2012 Chemical Kinetics for Synthesis of Triacetin from Biodiesel Byproduct Zahrul Mufrodi Department of Chemical Engineering, Ahmad Dahlan University 9 Kapas Street, Yogyakarta 55166, Indonesia Tel: 62-274-743-6596 E-mail: [email protected] Sutijan, Rochmadi & Arief Budiman Department of Chemical Engineering, Gadjah Mada University 2 Grafika Street, Yogyakarta 55281, Indonesia Received: December 9, 2011 Accepted: January 29, 2012 Published: April 1, 2012 doi:10.5539/ijc.v4n2p101 URL: http://dx.doi.org/10.5539/ijc.v4n2p101 The research is financed by KKP3T department of agriculture and Department of national education Indonesia Abstract The reaction kinetic of the glycerol acetylation with acetic acid catalyzed by sulfuric acid has been studied in the frame of continuous triacetin production. Glycerol, acetic acid and sulfuric acid catalyst were reacted in a batch reactor, in order to get reaction kinetics data. The mole ratio of catalyst to glycerol and temperature were studied during the experience. This study concluded that the selectivity of triacetin increased with increase in mole ratio of catalyst to glycerol. Increasing temperatures lead to increase selectivity of triacetin. It will decreased at the time of acetic acid has begun to evaporate. Triacetin synthesis is an exothermic reaction, a higher reaction temperature will cause in shifting the balance toward formation of reactants. This needs to be anticipated by taking one of the products so that the equilibrium shifting toward product formation. Keywords: Reaction kinetic, Glycerol, Acetylation, Triacetin, Acetic acid 1. Introduction Needs of oil energy sources from fossil fuels are increasing, while inventories are running low.
    [Show full text]
  • PARTIAL CHARACTERIZATION of LIPASE from COCOA BEANS (Theobroma Cacao
    448 Indo. J. Chem., 2008, 8 (3), 448 - 453 PARTIAL CHARACTERIZATION OF LIPASE FROM COCOA BEANS (Theobroma cacao. L.) OF CLONE PBC 159 Ratna Agung Samsumaharto Faculty of Biology, Setia Budi University, Jl. Let. Jend. Sutoyo Mojosongo – Surakarta 57127 Received 3 April 2008; Accepted 15 October 2008 ABSTRACT A study was carried out to characterize the cocoa lipase from cocoa beans (Theobroma cacao, L.) of clone PBC 159. The optimum temperature of cocoa lipase was 30-40 °C and the pH optimum was 7.0-8.0. The moleculer weight of the lipase enzyme was in between 45-66 kDa. The results indicate that Km value for cocoa bean lipase was 2.63 mM, when trimyristin was used as a substrate. The incubation of cocoa bean lipase with triolein and tributyrin (as substrate) yielded Km of 11.24 and 35.71 mM, respectively. The Vmax value obtained from the incubation of the lipase with a wide range of substrates, including tributyrin, trimyristin and triolein, are expressed as µmole acid/min/mg protein for cocoa lipase. Vmax values decreased with the increase in the triacylglycerol chain-length, with Vmax values of 27.78, 13.16 and 11.63 µmole acid/min/mg protein when incubated with tributyrin, trimyristin and triolein, respectively. Inhibition of lipase occurred in the presence of diisopropyl flourophosphate, N- bromosuccinimide and 5,5-dithiobis-(-2-nitrobenzoic acid). Keywords: characterization, lipase, cocoa beans INTRODUCTION According to Hassan [8] the lipase showed that the optimum temperature for oil palm mesocarp lipase Lipases are ester hydrolases or esterases since activity range between 20.0 to 32.5 °C.
    [Show full text]