Probabilistic Aspects of Dirichlet Series

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistic Aspects of Dirichlet Series Probabilistic Aspects of Dirichlet Series by Simon Lyons Department of Mathematics Imperial College London London SW7 2AZ United Kingdom Submitted to Imperial College London for the degree of Master of Philosophy 2010 Abstract We investigate and generalise some properties of a family of probability dis- tributions closely related to the Riemann zeta function. Random variables that have the property that divisibility by a set of distinct primes occurs as a set of independent events are characterised in terms of functions that are well known in number theory. We refer to random variables with this independence property as Khinchin random variables. In characterising the collection of Khinchin random variables, we make a connection between the probabilistic theory of discrete distributions and the number-theoretic concept of Dirichlet series. We outline some interesting correspondences between discrete probability distributions and arithmetic functions. A subset of the Khinchin random variables have infinitely divisible logarithms. We establish the necessity of a condition, already known to be sufficient, that ensures infinite divisibility. Some Khinchin random variables admit a multiplicative decomposition into a product of random prime numbers. The number of terms in such a product follows a Poisson distribution. We explore two instances of this decomposition: one related to the zeta distribution, and the other related to the so-called prime zeta function. We use the zeta distribution to derive known results from number theory via probabilistic methods, and provide a generalisation of the distribution for other unique factorisation domains. Acknowledgements I would like to thank Lane Hughston and Martijn Pistorius for introducing me to the material explored in this thesis, and Lane in particular for sharing insights derived from research he had previously conducted. Additional thanks to Don Blasius for his hospitality, and his comments on the nature of zeta functions, which added a new dimension to the nature of this work. I am grateful to Martijn Pistorius and Dorje Brody for their helpful com- ments on an earlier deaft of this thesis. Finally, thanks to Jorge Zubelli and the faculty at IMPA for allowing me to present my work at a fascinating and productive conference in Buzios. I would like to express my gratitude to the Fields Institute, Ontario, for funding to attend a research workshop in May-June 2010. The work reported herein was supported in part by an EPSRC DTA scholarship at Imperial College London. 3 Declaration The work presented in this thesis is my own. Simon Lyons, December 2010. 4 Contents 1 Introduction 6 1.1 Preliminary remarks . 6 1.2 Dirichlet series and the zeta function . 7 1.3 The zeta distribution . 10 2 Khinchin distributions 14 2.1 The factorisation property . 14 2.2 Prime Factors . 15 2.3 Characterisation of Khinchin distributions . 17 2.4 Construction of multiplicative arithmetic functions . 21 2.5 Changes of measure . 23 2.6 Examples of Khinchin distributions . 25 3 Infinite divisibility 32 3.1 Logarithms of Khinchin distributions . 32 3.2 Examples of Khinchin random variables with infinitely divisi- ble logarithms . 39 4 Density 42 4.1 Analytic and asymptotic density . 42 4.2 Examples from number theory . 45 5 Concluding remarks 50 6 Appendix 53 6.1 Miscellaneous observations . 53 6.1.1 The prime number theorem for arithmetic progressions 53 6.1.2 Gaussian integers . 54 6.2 Index of notation . 58 5 Section 1 Introduction 1.1 Preliminary remarks In this thesis, I explore properties of a family of probability distributions closely related to the Riemann zeta function. The theory is applied to a more general class of functions known as Dirichlet series. The first section of the report introduces the zeta function, Dirichlet series, and various properties of arithmetic functions. One can define an arithmetic function as a function f(n) that expresses some property of the integer n. We introduce, for each real s > 1, the zeta distribution, Zeta(s), and develop intuition about its behaviour. In Section two, we construct a class of probability distributions closely related to Dirichlet series, which we refer to as distributions of the Khinchin type. A random variable X that has a Khinchin distribution has the following property: if m and n are mutually prime positive numbers, then the events fm divides Xg and fn divides Xg are independent. In Theorem 3.6, we provide a necessary and sufficient condition for a probability distribution to be of the Khinchin type. In Section three, we find a condition on a Dirichlet series that holds if and only if the logarithm of the associated Khinchin random variable is infinitely divisible. We use infinite divisibility of the logarithm of a zeta random variable to find a new representation of the zeta distribution in terms of random prime numbers, presented in Example 3.2 in Section three. Section four links the probabilistic theory developed in the previous chap- ters to various aspects of classical number theory. The limiting case of the zeta distribution as s approaches unity is not a bona-fide probability distri- bution. Nevertheless, one can use the limiting case to study number theoretic concepts known as densities. In Example 4.1, we prove a weak version of the 6 prime number theorem. We examine an analogue of the Erd¨os-Kactheorem that applies to the zeta distribution. Roughly speaking, the Erd¨os-Kacthe- orem states that the number of distinct prime factors of a large number n behaves like a sample from a normal distribution with mean and variance log(log(n)). In the appendix, we sketch some miscellaneous ideas that do not fit into the natural flow of the main body of the thesis. This section is intended to be read as a heuristic guide to possible avenues for further development of the theory. We choose not to sacrifice clarity for the sake of brevity. Some calculations may be laid out in rather more detail than is strictly necessary. Our aim is to make comprehension of the subject as straightforward as possible. While it is possible that some results in this thesis may already be known, all unattributed calculations are due to the author, and are original to the best of my knowledge. A brief summary of notation is included in the appendix. 1.2 Dirichlet series and the zeta function The Riemann zeta function is a central object of study in analytic number theory. Euler demonstrated, for positive integral values of s greater than unity, that the sum 1 X 1 ζ(s) := < 1; (1.1) ns n=1 converges, and that the sum diverges when s = 1. The domain of the zeta function was extended by Chebychev from positive integral values of s > 1 to real values of s > 1. Riemann showed that the zeta function admits an analytic continuation as a holomorphic function on the complex plane for all s 2 C except for a simple pole at s = 1. The literature on the zeta function is vast, and no attempt at a survey will be made here. We mention Whittaker and Watson [45], Titchmarsh [44], and Ivi´c[27], for example, as being well-known accounts of the properties of ζ(s). See Edwards [16] for historical information about the zeta function and an English translation of Riemann's original memoir on the subject. A crucial feature of the zeta function is that for Re(s) > 1 it can be expressed as a product over terms involving the prime numbers. This is a consequence of the fundamental theorem of arithmetic, which states that each integer admits a unique factorisation into primes. In particular, the 7 following identity holds: Y −1 ζ(s) = 1 − p−s ; Re(s) > 1; (1.2) p where p is understood to run over the set of all primes. The plausibility of (1.2) can readily be seen by expanding each term in the product as a power series, and formally multiplying the terms out. See, for example, Apostol [2, Chapter 11] for more on Euler products. One can generalise the notion of a zeta function in the following way. Suppose we have some function a : N ! C defined on the positive integers. We refer to a(n) as an arithmetic function. We form the series 1 X a(n) A(s) := ; (1.3) ns n=1 assuming that the series converges for some s 2 C. We refer to A(s) as a Dirichlet series. A(s) is also known as the generating function of a(n). Apostol [2, p. 233] shows that if a Dirichlet series converges absolutely for a complex number s0 = σ0 + it0 then it converges absolutely for all s 2 C sat- isfying Re(s) > σ0. The same principle applies for conditional convergence. Unless otherwise noted, we shall assume in what follows that Dirichlet se- ries are absolutely convergent for all s with real part greater than some real number σ0. Multiplication of Dirichlet series is related to a well-known binary opera- tion on arithmetic functions. If F (s) and G(s) are Dirichlet series, then the product 1 ! 1 ! X f(n) X g(n) F (s)G(s) = (1.4) ns ns n=1 n=1 is another Dirichlet series, which we shall call H(s). By multiplying out the terms in (1.4), one can see that f(2)g(1) f(1)g(2) f(3)g(1) F (s)G(s) =f(1)g(1) + + + 2s 2s 3s f(1)g(3) f(4)g(1) f(2)g(2) f(1)g(4) + + + + + ::: (1.5) 3s 4s 4s 4s Grouping terms with the same denominator, one observes that 1 X h(n) H(s) = ; (1.6) ns n=1 8 where X n h(n) = f(d)g : (1.7) d d divides n This operation on the functions f(n) and g(n) is known as Dirichlet multi- plication, or Dirichlet convolution.
Recommended publications
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015
    juan guillermo dueñas luna ASPECTSOFQUANTUMFIELDTHEORYAND NUMBERTHEORY ASPECTSOFQUANTUMFIELDTHEORYANDNUMBER THEORY juan guillermo dueñas luna Quantum Field Theory and Riemann Zeros Theoretical Physics Department. Brazilian Center For Physics Research. July 02, 2015. Juan Guillermo Dueñas Luna: Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015. supervisors: Nami Fux Svaiter. location: Rio de Janeiro. time frame: July 02, 2015. ABSTRACT The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1=2. Motivated by the Hilbert- Pólya conjecture which states that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory, a lot of activity has been devoted to establish a bridge between number theory and physics. Using the techniques of the spectral zeta function we show that prime numbers and the Rie- mann zeros have a different behaviour as the spectrum of a linear operator associated to a system with countable infinite number of degrees of freedom. To explore more connections between quantum field theory and number theory we studied three systems involving these two sequences of numbers. First, we discuss the renormalized zero-point energy for a massive scalar field such that the Riemann zeros appear in the spectrum of the vacuum modes. This scalar field is defined in a (d + 1)-dimensional flat space-time, assuming that one of the coordinates lies in an finite interval [0, a]. For even dimensional space-time we found a finite reg- ularized energy density, while for odd dimensional space-time we are forced to introduce mass counterterms to define a renormalized vacuum energy.
    [Show full text]
  • Prime Numbers and the Riemann Hypothesis
    Prime numbers and the Riemann hypothesis Tatenda Kubalalika October 2, 2019 ABSTRACT. Denote by ζ the Riemann zeta function. By considering the related prime zeta function, we demonstrate in this note that ζ(s) 6= 0 for <(s) > 1=2, which proves the Riemann hypothesis. Keywords and phrases: Prime zeta function, Riemann zeta function, Riemann hypothesis, proof. 2010 Mathematics Subject Classifications: 11M26, 11M06. Introduction. Prime numbers have fascinated mathematicians since the ancient Greeks, and Euclid provided the first proof of their infinitude. Central to this subject is some innocent-looking infinite series known as the Riemann zeta function. This is is a function of the complex variable s, defined in the half-plane <(s) > 1 by 1 X ζ(s) := n−s n=1 and in the whole complex plane by analytic continuation. Euler noticed that the above series can Q −s −1 be expressed as a product p(1 − p ) over the entire set of primes, which entails that ζ(s) 6= 0 for <(s) > 1. As shown by Riemann [2], ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue 1, and satisfies the functional equation ξ(s) = ξ(1 − s), 1 −z=2 1 R 1 −x w−1 where ξ(z) = 2 z(z − 1)π Γ( 2 z)ζ(z) and Γ(w) = 0 e x dx. From the functional equation and the relationship between Γ and the sine function, it can be easily noticed that 8n 2 N one has ζ(−2n) = 0, hence the negative even integers are referred to as the trivial zeros of ζ in the literature.
    [Show full text]
  • Series of Reciprocal Powers of K-Almost Primes
    SERIES OF RECIPROCAL POWERS OF k−ALMOST PRIMES RICHARD J. MATHAR Abstract. Sums over inverse s-th powers of semiprimes and k-almost primes are transformed into sums over products of powers of ordinary prime zeta functions. Multinomial coefficients known from the cycle decomposition of permutation groups play the role of expansion coefficients. Founded on a known convergence acceleration for the ordinary prime zeta functions, the sums and first derivatives are tabulated with high precision for indices k = 2,..., 6 and integer powers s = 2,..., 8. 1. Overview Series over rational polynomials evaluated at integer arguments contain sub- series summing over integers classified by the count of their prime factors. The core example is the Riemann zeta function ζ which accumulates the prime zeta function P1 plus what we shall define the almost-prime zeta functions Pk (Section 2). The central observation of this manuscript is that the almost-prime zeta functions are combinatorial sums over the prime zeta function (Section 3). Since earlier work by Cohen, Sebah and Gourdon has pointed at efficient numerical algorithms to compute P1, series over reciprocal almost-primes—which may suffer from slow convergence in their defining format—may be computed efficiently by reference to the P1. In consequence, any converging series over the positive integers which has a Taylor expansion in reciprocal powers of these integers splits into k-almost prime components. Section 4 illustrates this for the most basic formats. Number theory as such will not be advanced. The meromorphic landscape of the prime zeta functions as a function of their main variable appears to be more complicated than what is known for their host, the Riemann zeta function; so only some remarks on the calculation of first derivatives are dropped.
    [Show full text]
  • The Inverse Riemann Zeta Function
    The inverse Riemann zeta function Artur Kawalec Abstract In this article, we develop a formula for an inverse Riemann zeta function such that for w = ζ(s) we have s = ζ−1(w) for real and complex domains s and w. The presented work is based on extending the analytical recurrence formulas for trivial and non-trivial zeros to solve an equation ζ(s) − w = 0 for a given w-domain using logarithmic differentiation and zeta recursive root extraction methods. We further explore formulas for trivial and non-trivial zeros of the Riemann zeta function in greater detail, and next, we introduce an expansion of the inverse zeta function by its singularities, and study its properties and develop many identities that emerge from them. In the last part, we extend the presented results as a general method for finding zeros and inverses of many other functions, such as the gamma function, the Bessel function of the first kind, or finite/infinite degree polynomials and rational functions, etc. We further compute all the presented formulas numerically to high precision and show that these formulas do indeed converge to the inverse of the Riemann zeta function and the related results. We also develop a fast algorithm to compute ζ−1(w) for complex w. arXiv:2106.06915v1 [math.NT] 13 Jun 2021 1 1 Introduction The Riemann zeta function is classically defined by an infinite series 1 X 1 ζ(s) = (1) ns n=1 which is is absolutely convergent <(s) > 1, where s = σ + it is a complex variable. The values for the first few special cases are: k X 1 ζ(1) ∼ ∼ γ + log(k) as k ! 1; n n=1 π2 ζ(2) = ; 6 (2) ζ(3) = 1:20205690315959 :::; π4 ζ(4) = ; 90 ζ(5) = 1:03692775514337 :::; and so on.
    [Show full text]
  • Möbius Inversion from the Point of View of Arithmetical Semigroup Flows
    Biblioteca de la Revista Matematica´ Iberoamericana Proceedings of the \Segundas Jornadas de Teor´ıa de Numeros"´ (Madrid, 2007), 63{81 M¨obiusinversion from the point of view of arithmetical semigroup flows Manuel Benito, Luis M. Navas and Juan Luis Varona Abstract Most, if not all, of the formulas and techniques which in number theory fall under the rubric of “M¨obiusinversion" are instances of a single general formula involving the action or flow of an arithmetical semigroup on a suitable space and a convolution-like operator on functions. The aim in this exposition is to briefly present the general formula in its abstract context and then illustrate the above claim using an extensive series of examples which give a flavor for the subject. For simplicity and to emphasize the unifying character of this point of view, these examples are mostly for the traditional number theoretical semigroup N and the spaces R or C. 1. Introduction The “M¨obiusInversion Formula" in elementary number theory most often refers to the formula X X n (1.1) fb(n) = f(d) () f(n) = µ(d)fb ; d djn djn where f is an arithmetical function, that is, a function on N with values typically in Z, R or C; the sum ranges over the positive divisors d of a given 2000 Mathematics Subject Classification: Primary 11A25. Keywords: M¨obiusfunction, M¨obius transform, Dirichlet convolution, inversion formula, arithmetical semigroup, flow. 64 M. Benito, L. M. Navas and J. L. Varona n 2 N, and µ is of course the M¨obiusfunction, given by 8 µ(1) = 1; <> (1.2) µ(n) = 0 if n has a squared factor, > k : µ(p1p2 ··· pk) = (−1) when p1; p2; : : : ; pk are distint primes.
    [Show full text]
  • Coalescence Phenomenon of Quantum Cohomology of Grassmannians and the Distribution of Prime Numbers
    COALESCENCE PHENOMENON OF QUANTUM COHOMOLOGY OF GRASSMANNIANS AND THE DISTRIBUTION OF PRIME NUMBERS GIORDANO COTTI(†) Abstract. The occurrence and frequency of a phenomenon of resonance (namely the coalescence of some Dubrovin canonical coordinates) in the locus of Small Quantum Cohomology of complex Grass- mannians is studied. It is shown that surprisingly this frequency is strictly subordinate and highly influenced by the distribution of prime numbers. Two equivalent formulations of the Riemann Hypoth- esis are given in terms of numbers of complex Grassmannians without coalescence: the former as a constraint on the disposition of singularities of the analytic continuation of the Dirichlet series associ- ated to the sequence counting non-coalescing Grassmannians, the latter as asymptotic estimate (whose error term cannot be improved) for their distribution function. Contents Notations 2 1. Introduction and Results3 1.1. Plan of the paper. 6 2. Frobenius Manifolds and Quantum Cohomology6 2.1. Semisimple Frobenius Manifolds8 2.2. Gromov-Witten Theory and Quantum Cohomology9 3. Quantum Satake Principle 11 3.1. Results on classical cohomology of Grassmannians 11 3.2. Quantum Cohomology of G(k, n) 15 4. Frequency of Coalescence Phenomenon in QH•(G(k, n)) 16 4.1. Results on vanishing sums of roots of unity 17 4.2. Characterization of coalescing Grassmannians 18 4.3. Dirichlet series associated to non-coalescing Grassmannians, and their rareness 19 5. Distribution functions of non-coalescing Grassmannians, and equivalent form of the Riemann Hypothesis 22 References 24 arXiv:1608.06868v2 [math-ph] 21 Sep 2016 (†) SISSA, Via Bonomea, 265 - 34136 Trieste ITALY E-mail address: [email protected].
    [Show full text]
  • On the Twin Prime Conjecture Hipoteza O Liczbach Pierwszych Bli´Zniaczych
    Adam Mickiewicz University in Pozna´n Faculty of Mathematics and Computer Science 1 Master’s thesis On the twin prime conjecture Hipoteza o liczbach pierwszych bli´zniaczych Tomasz Buchert Supervisor prof. dr hab. Wojciech Gajda Pozna´n2011 Pozna´n, dnia ............... O´swiadczenie Ja, nizej˙ podpisany Tomasz Buchert, student Wydziału Matematyki i Infor- matyki Uniwersytetu im. Adama Mickiewicza w Poznaniu o´swiadczam, ze˙ przed- kładan ˛aprac˛edyplomow ˛apt.: On the twin prime conjecture, napisałem samo- dzielnie. Oznacza to, ze˙ przy pisaniu pracy, poza niezb˛ednymi konsultacjami, nie korzystałem z pomocy innych osób, a w szczególno´scinie zlecałem opracowania rozprawy lub jej cz˛e´sciinnym osobom, ani nie odpisywałem tej rozprawy lub jej cz˛e´sci od innych osób. O´swiadczam równiez,˙ ze˙ egzemplarz pracy dyplomowej w formie wydruku komputerowego jest zgodny z egzemplarzem pracy dyplomowej w formie elek- tronicznej. Jednocze´snie przyjmuj˛edo wiadomo´sci, ze˙ gdyby powyzsze˙ o´swiadczenie okazało si˛enieprawdziwe, decyzja o wydaniu mi dyplomu zostanie cofni˛eta. .............................. Contents 1 Introduction 1 1.1 Prime numbers . 1 1.2 The goal and structure of the thesis . 3 1.3 Notation . 4 1.4 References . 4 2 Prime numbers 5 2.1 Basic theorems . 5 2.2 Mertens’ theorems . 6 2.3 Prime Number Theorem . 15 2.4 Summary . 15 3 Twin primes 17 3.1 Twin Prime Conjecture . 17 Introduction . 17 Related problems . 20 Goldbach’s Conjecture . 20 de Polignac’s Conjecture . 20 k-tuple conjecture . 22 Smallprimegaps.......................... 22 Dickson’s Conjecture . 23 3.2 Characterization of twin primes . 24 Characterization by congruence relations . 24 Characterization by multiplicative functions .
    [Show full text]
  • Arxiv:2009.02640V2 [Math.GM] 23 Sep 2020
    The recurrence formulas for primes and non-trivial zeros of the Riemann zeta function Artur Kawalec Abstract In this article, we explore the Riemann zeta function with a per- spective on primes and non-trivial zeros. We develop the Golomb’s recurrence formula for the nth+1 prime, and assuming (RH), we pro- pose an analytical recurrence formula for the nth+1 non-trivial zero of the Riemann zeta function. Thus all non-trivial zeros up the nth order must be known to generate the nth+1 non-trivial zero. We also explore a variation of the recurrence formulas for primes based on the prime zeta function, which will be a basis for the development of the recurrence formulas for non-trivial zeros based on the secondary zeta function. In the last part, we review the presented formulas and out- line the duality between primes and non-trivial zeros. The proposed formula implies that all primes can be converted into an individual non-trivial zero (assuming RH), and conversely, all non-trivial zeros can be converted into an individual prime (not assuming RH). Also, throughout this article, we summarize numerical computation and ver- ify the presented results to high precision. arXiv:2009.02640v3 [math.GM] 19 Sep 2021 1 1 Introduction The Riemann zeta function is defined by the infinite series ∞ 1 ζ(s)= , (1) ns n=1 X which is absolutely convergent for (s) > 1, where s = σ + it is a complex ℜ variable. The values for the first few special cases are: k 1 ζ(1) γ + log(k) as k , ∼ n ∼ →∞ n=1 X π2 ζ(2) = , 6 (2) ζ(3) = 1.20205690315959 ..., π4 ζ(4) = , 90 ζ(5) = 1.03692775514337 ...
    [Show full text]
  • Analytic Number Theory
    Otto Forster: Analytic Number Theory Lecture notes of a course given in the Winter Semester 2001/02 at the Department of Mathematics, LMU Munich, Germany O. Forster: Analytic Number Theory Contents 0. Notations and Conventions 1 1. Divisibility. Unique Factorization Theorem 3 2. Congruences. Chinese Remainder Theorem 7 3. Arithmetical Functions. M¨obiusInversion Theorem 11 4. Riemann Zeta Function. Euler Product 20 5. The Euler-Maclaurin Summation Formula 27 6. Dirichlet Series 37 7. Group Characters. Dirichlet L-series 47 8. Primes in Arithmetic Progressions 52 9. The Gamma Function 57 10. Functional Equation of the Zeta Function 64 11. The Chebyshev Functions Theta and Psi 72 12. Laplace and Mellin Transform 78 13. Proof of the Prime Number Theorem 84 O. Forster: Analytic Number Theory 0. Notations and Conventions Standard notations for sets Z ring of all integers N0 set of all integers ≥ 0 N1 set of all integers ≥ 1 P set of all primes = {2, 3, 5, 7, 11,...} Q, R, C denote the fields of rational, real and complex numbers respectively A∗ multiplicative group of invertible elements of a ring A [a, b], ]a, b[ , [a, b[ , ]a, b] denote closed, open and half-open intervals of R R+ = [0, ∞[ set of non-negative real numbers ∗ ∗ R+ = R+ ∩ R multiplicative group of positive real numbers bxc greatest integer ≤ x ∈ R Landau symbols O, o For two functions f, g :[a, ∞[ → C, one writes f(x) = O(g(x)) for x → ∞, if there exist constants C > 0 and x0 ≥ a such that |f(x)| ≤ C|g(x)| for all x ≥ x0.
    [Show full text]
  • SPECIAL VALUES of RIEMANN ZETA FUNCTION a Thesis Submitted to the Department of Mathematics by MILAN P. HUYNH Dartmouth College
    SPECIAL VALUES OF RIEMANN ZETA FUNCTION A Thesis Submitted to the Department of Mathematics By MILAN P. HUYNH Dartmouth College Hanover, NH May 2017 Advisor: NAOMI TANABE ABSTRACT P1 1 Q −s −1 The Riemann zeta function is defined as ζ(s) = n=1 ns = p2P (1 − p ) for com- plex numbers s with <(s) > 1, and it can be analytically continued to the whole complex plane C except at s = 1. Furthermore, the values of ζ(2k) at positive integers k can be de- scribed in terms of Bernoulli numbers and π2k. This note details the properties of ζ(s) and Bernoulli numbers, delineates a newly published method for evaluating ζ(2k), and summa- rizes properties of Dirichlet L-functions. i ACKNOWLEDGEMENTS First and foremost, I sincerely thank my thesis advisor, Professor Naomi Tanabe, for her immense patience, mentorship, and motivation on this project. I am extremely grateful for my professors at the Department of Mathematics for their support these four years. Also, I acknowledge Professor Dana Williams for his thoughts. ii TABLE OF CONTENTS Acknowledgments . i Chapter 1: Introduction . 1 Chapter 2: Riemann Zeta Function . 2 Chapter 3: Analytic Continuation . 7 3.1 Gamma Function . 7 3.2 Jacobi Theta Function . 11 3.3 Completed Riemann Zeta Function . 13 Chapter 4: Bernoulli Numbers and Bernoulli Polynomials . 18 4.1 Bernoulli Numbers . 18 4.2 Bernoulli Polynomials . 21 Chapter 5: Special Values of Riemann Zeta Function . 26 5.1 Connecting to the Cotangent Function . 26 5.2 Alternative Proof . 31 Chapter 6: Dirichlet L-Function . 38 References . 43 iii CHAPTER 1 INTRODUCTION This note gives a robust understanding of the Riemann zeta function and a connection to a generalization of it.
    [Show full text]
  • Appendix a Zeta Functions in Number Theory
    Appendix A Zeta Functions in Number Theory In this appendix we collect some basic facts about zeta functions in number theory to which our theory of explicit formulas can be applied. We refer to [Lan, Chapters VIII and XII–XV], [ParSh1, Chapter 4] and [ParSh2, Chapter 1, §6, Chapter 2, §1.13] for more complete information and proofs. A.1 The Dedekind Zeta Function Let K be an algebraic number field of degree d over Q, and let O be the ring of integers of K. The norm of an ideal a of O is defined as the number of elements of the ring O/a: Na =#O/a. (A.1) The norm is multiplicative: N(ab)=Na · Nb. Furthermore, an ideal has a unique factorization into prime ideals, a pa1 pak = 1 ... k , (A.2) where p1,...,pk are prime ideals. We denote by r1 the number of real embeddings K → R and by r2 the number of pairs of complex conjugate embeddings K → C.Thuswe have that r1 +2r2 = d. Further, w stands for the number of roots of unity contained in K. Associated with K, we need the discriminant disc(K), the class number h, and the regulator R. We refer to [Lan, p. 64 and p. 109] for the definition of these notions. 388 Appendix A. Zeta Functions in Number Theory The Dedekind zeta function of K is defined for Re s>1by ∞ −s −s ζK (s)= (Na) = Ann . (A.3) a n=1 Here, a runs over the ideals of O, and, in the second expression, An denotes the number of ideals of O of norm n.
    [Show full text]