Prime Numbers– Things Long-Known and Things New- Found

Total Page:16

File Type:pdf, Size:1020Kb

Prime Numbers– Things Long-Known and Things New- Found Karl-Heinz Kuhl PRIME NUMBERS– THINGS LONG-KNOWN AND THINGS NEW- FOUND A JOURNEY THROUGH THE LANDSCAPE OF THE PRIME NUMBERS Amazing properties and insights – not from the perspective of a mathematician, but from that of a voyager who, pausing here and there in the landscape of the prime numbers, approaches their secrets in a spirit of playful adventure, eager to experiment and share their fascination with others who may be interested. Third, revised and updated edition (2020) 0 Prime Numbers – things long- known and things new-found A journey through the landscape of the prime numbers Amazing properties and insights – not from the perspective of a mathematician, but from that of a voyager who, pausing here and there in the landscape of the prime numbers, approaches their secrets in a spirit of playful adventure, eager to experiment and share their fascination with others who may be interested. Dipl.-Phys. Karl-Heinz Kuhl Parkstein, December 2020 1 1 + 2 + 3 + 4 + ⋯ = − 12 (Ramanujan) Web: https://yapps-arrgh.de (Yet another promising prime number source: amazing recent results from a guerrilla hobbyist) Link to the latest online version https://yapps-arrgh.de/primes_Online.pdf Some of the text and Mathematica programs have been removed from the free online version. The printed and e-book versions, however, contain both the text and the programs in their entirety. Recent supple- ments to the book can be found here: https://yapps-arrgh.de/data/Primenumbers_supplement.pdf Please feel free to contact the author if you would like a deeper insight into the many Mathematica programs. Contact: [email protected] 1 For Michèle ISBN 978-3-939247-93-7 Publishing house: Eckhard Bodner, Pressath, Germany - 2017 Third, revised edition – December 2020 Translation: Ewan Whyte The illustration on the title page shows the graphic from Figure 82, Chapter 9.2. Cover design: Karl-Heinz Kuhl Copyright: this work and all embedded illustrations and computer programs are copyright protected. Any commercial use that has not been expressly authorized by the author is prohibited. The new algorithms and methods described in this book are protected by notarization (with an indication of the date). The contents of this book (and of the free online version available for download) including all related files may be used, distributed, published on the Internet and referred to by readers in their own publications in each case for private and non-commercial purposes only and provided all contents are quoted correctly, in full and in an unaltered form, accompanied by a description of the book, the name of the author and a link to the website above. This applies to all texts, graphics and computer programs as well as other files. Citations in particular from passages printed in blue should be accompanied by an indication that the material in question is considered ‘new’. Liability: the author is not responsible for damages of any kind that may result from use of the computer program listings (whether in the Appendix, on the accompanying CD or in the body of the text). Furthermore, the author gives no warranty that all programs are free from errors or that they will run in all operating system environments. 2 1 Table of Contents 2 Introduction ................................................................................................................................................. 8 2.1 Mathematical notation used in this book .............................................................................. 10 3 Basics of prime numbers ...................................................................................................................... 14 3.1 Quick start: what do we know for certain? .......................................................................... 16 3.2 Quick start: what are our (unproven) conjectures? ......................................................... 17 3.3 Quick start: what is still unsolved? .......................................................................................... 18 3.4 Quick start: what is new? ............................................................................................................. 19 4 Special kinds of prime numbers ........................................................................................................ 20 4.1 Twin primes ...................................................................................................................................... 20 4.2 Prime triplets and quadruplets ................................................................................................. 23 4.3 Prime n-tuplets ............................................................................................................................... 25 4.4 Correlations of the last digits in the prime number sequence ..................................... 32 4.5 Mersenne prime numbers ........................................................................................................... 34 4.5.1 GIMPS – the Great Internet Mersenne Prime Search ................................................ 39 4.6 Fermat prime numbers................................................................................................................. 40 4.7 Lucky primes ..................................................................................................................................... 42 4.8 Perfect numbers .............................................................................................................................. 44 4.8.1 General issues and definition ............................................................................................. 44 4.8.2 Properties ................................................................................................................................... 45 4.9 Sophie Germain prime numbers ............................................................................................... 47 4.9.1 Computation and properties .............................................................................................. 48 4.10 Fibonacci numbers and other recursive sequences ......................................................... 49 4.10.1 Linear recursion: a mighty instrument .......................................................................... 52 4.10.2 Fibonacci prime and pseudoprime numbers ............................................................... 61 4.10.3 Meta-Fibonacci sequences ................................................................................................... 63 4.11 Carmichael and Knödel numbers ............................................................................................. 64 4.12 Emirp numbers ................................................................................................................................ 65 4.13 Wagstaff prime numbers ............................................................................................................. 65 4.14 Wieferich prime numbers ........................................................................................................... 67 4.15 Wilson prime numbers ................................................................................................................. 70 4.16 Wolstenholme prime numbers.................................................................................................. 71 4.17 RG numbers (= recursive Gödelized) ...................................................................................... 72 4.17.1 GOCRON type 6 (‘prime OCRONs‘) ................................................................................... 72 3 4.17.2 GOCRON type 4 (with the symbols ‚‘2’,‘*’,‘P’ and ‘^’) ................................................ 76 5 Digression: Riemann’s zeta function 휁(푠) ..................................................................................... 79 5.1 General ................................................................................................................................................ 79 5.2 The different representations of 휁(푠) ..................................................................................... 85 5.3 Product representation of 휁(푠) in the complex domain ................................................. 87 5.4 An unexpected product representation of a slightly different 휁(푠) ........................... 93 5.5 A counting function for the number of zeros ...................................................................... 96 5.6 The zeta function and quantum chaos: a gangway to physics...................................... 99 6 Digression: the Riemann function 푅(푠) ...................................................................................... 103 7 A few important arithmetical functions ...................................................................................... 104 7.1 Omega functions: number of prime factors ...................................................................... 104 7.2 The Liouville function ................................................................................................................ 106 7.3 The Chebyshev function ............................................................................................................ 108 7.4 The Euler phi function (totient function) ........................................................................... 111 7.4.1 Calculation and graphic representation of the phi function ............................... 111 7.4.2 Properties of
Recommended publications
  • On the Prime Number Subset of the Fibonacci Numbers
    Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West
    [Show full text]
  • Mersenne and Fermat Numbers 2, 3, 5, 7, 13, 17, 19, 31
    MERSENNE AND FERMAT NUMBERS RAPHAEL M. ROBINSON 1. Mersenne numbers. The Mersenne numbers are of the form 2n — 1. As a result of the computation described below, it can now be stated that the first seventeen primes of this form correspond to the following values of ra: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281. The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127—1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in Archibald [l]; see also Kraitchik [4]. The next five Mersenne primes were found in 1952; they are at present the five largest known primes of any form. They were announced in Lehmer [7] and discussed by Uhler [13]. It is clear that 2" —1 can be factored algebraically if ra is composite; hence 2n —1 cannot be prime unless w is prime. Fermat's theorem yields a factor of 2n —1 only when ra + 1 is prime, and hence does not determine any additional cases in which 2"-1 is known to be com- posite. On the other hand, it follows from Euler's criterion that if ra = 0, 3 (mod 4) and 2ra + l is prime, then 2ra + l is a factor of 2n— 1.
    [Show full text]
  • Number 73 Is the 37Th Odd Number
    73 Seventy-Three LXXIII i ii iii iiiiiiiiii iiiiiiiii iiiiiiii iiiiiii iiiiiiii iiiiiiiii iiiiiiiiii iii ii i Analogous ordinal: seventy-third. The number 73 is the 37th odd number. Note the reversal here. The number 73 is the twenty-first prime number. The number 73 is the fifty-sixth deficient number. The number 73 is in the eighth twin-prime pair 71, 73. This is the last of the twin primes less than 100. No one knows if the list of twin primes ever ends. As a sum of four or fewer squares: 73 = 32 + 82 = 12 + 62 + 62 = 12 + 22 + 22 + 82 = 22 + 22 + 42 + 72 = 42 + 42 + 42 + 52. As a sum of nine or fewer cubes: 73 = 3 13 + 2 23 + 2 33 = 13 + 23 + 43. · · · As a difference of two squares: 73 = 372 362. The number 73 appears in two Pythagorean triples: [48, 55, 73] and [73, 2664, 2665]. Both are primitive, of course. As a sum of three odd primes: 73 = 3 + 3 + 67 = 3 + 11 + 59 = 3 + 17 + 53 = 3 + 23 + 47 = 3 + 29 + 41 = 5 + 7 + 61 = 5 + 31 + 37 = 7 + 7 + 59 = 7 + 13 + 53 = 7 + 19 + 47 = 7 + 23 + 43 = 7 + 29 + 37 = 11 + 19 + 43 = 11 + 31 + 31 = 13 + 13 + 47 = 13 + 17 + 43 = 13 + 19 + 41 = 13 + 23 + 37 = 13 + 29 + 31 = 17 + 19 + 37 = 19 + 23 + 31. The number 73 is the 21st prime number. It’s reversal, 37, is the 12th prime number. Notice that if you strip off the six triangular points from the 73-circle hexagram pictured above, you are left with a hexagon of 37 circles.
    [Show full text]
  • Primes and Primality Testing
    Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • On Sufficient Conditions for the Existence of Twin Values in Sieves
    On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius .
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • Sequences of Primes Obtained by the Method of Concatenation
    SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd
    [Show full text]
  • The Aliquot Constant We first Show the Following Result on the Geometric Mean for the Ordi- Nary Sum of Divisors Function
    THE ALIQUOT CONSTANT WIEB BOSMA AND BEN KANE Abstract. The average value of log s(n)/n taken over the first N even integers is shown to converge to a constant λ when N tends to infinity; moreover, the value of this constant is approximated and proven to be less than 0. Here s(n) sums the divisors of n less than n. Thus the geometric mean of s(n)/n, the growth factor of the function s, in the long run tends to be less than 1. This could be interpreted as probabilistic evidence that aliquot sequences tend to remain bounded. 1. Introduction This paper is concerned with the average growth of aliquot sequences. An aliquot sequence is a sequence a0, a1, a2,... of positive integers ob- tained by iteration of the sum-of-aliquot-divisors function s, which is defined for n> 1 by s(n)= d. d|n Xd<n The aliquot sequence with starting value a0 is then equal to 2 a0, a1 = s(a0), a2 = s(a1)= s (a0),... ; k we will say that the sequence terminates (at 1) if ak = s (a0)=1 for some k ≥ 0. The sequence cycles (or is said to end in a cycle) k l 0 if s (a0) = s (a0) for some k,l with 0 ≤ l<k, where s (n) = n by arXiv:0912.3660v1 [math.NT] 18 Dec 2009 definition. Note that s is related to the ordinary sum-of-divisors function σ, with σ(n)= d|n d, by s(n)= σ(n) − n for integers n> 1.
    [Show full text]
  • Programming Exam 1 on the Assignments Page
    COS 126 Midterm 1 Programming Exam Spring 2015 This part of your midterm exam is like a mini-programming assignment. You will create four programs, compile them, and run them on your laptop. Debug your code as needed. This exam is open book, open browser—but only our course website and booksite! Of course, no internal or external communication is permitted (e.g., talking, email, IM, texting, cell phones) during the exam. You may use code from your assignments or code found on the COS126 website. When you are done, submit your program via the course website using the submit link for Programming Exam 1 on the Assignments page. Grading. Your program will be graded on correctness, clarity (including comments), design, and efficiency. You will lose a substantial number of points if your program does not compile or does not have the proper API, or if it crashes on typical inputs. Even though you will electronically submit your code, you must turn in this paper so that we have a record that you took the exam and signed the Honor Code. Print your name, login ID, and precept number on this page (now), and write out and sign the Honor Code pledge before turning in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question with anyone until after everyone in the class has taken the exam. You have 90 minutes to complete the test. “I pledge my honor that I have not violated the Honor Code during this examination.” ___________________________________________________________________ ___________________________________________________________________ [copy the pledge onto these lines] _____________________________ [signature] NAME: ______________________ Part 0 /12 Part 1 /8 LOGIN: ______________________ Part 2 /5 Part 3 /5 PRECEPT: ______________________ TOTAL /30 !1 The aliquot sum of a positive integer is the sum of its positive divisors other than itself (these divisors are called its proper divisors).
    [Show full text]
  • POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti
    POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs.
    [Show full text]