Analytic Number Theory
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Euler Product Asymptotics on Dirichlet L-Functions 3
EULER PRODUCT ASYMPTOTICS ON DIRICHLET L-FUNCTIONS IKUYA KANEKO Abstract. We derive the asymptotic behaviour of partial Euler products for Dirichlet L-functions L(s,χ) in the critical strip upon assuming only the Generalised Riemann Hypothesis (GRH). Capturing the behaviour of the partial Euler products on the critical line is called the Deep Riemann Hypothesis (DRH) on the ground of its importance. Our result manifests the positional relation of the GRH and DRH. If χ is a non-principal character, we observe the √2 phenomenon, which asserts that the extra factor √2 emerges in the Euler product asymptotics on the central point s = 1/2. We also establish the connection between the behaviour of the partial Euler products and the size of the remainder term in the prime number theorem for arithmetic progressions. Contents 1. Introduction 1 2. Prelude to the asymptotics 5 3. Partial Euler products for Dirichlet L-functions 6 4. Logarithmical approach to Euler products 7 5. Observing the size of E(x; q,a) 8 6. Appendix 9 Acknowledgement 11 References 12 1. Introduction This paper was motivated by the beautiful and profound work of Ramanujan on asymptotics for the partial Euler product of the classical Riemann zeta function ζ(s). We handle the family of Dirichlet L-functions ∞ L(s,χ)= χ(n)n−s = (1 χ(p)p−s)−1 with s> 1, − ℜ 1 p X Y arXiv:1902.04203v1 [math.NT] 12 Feb 2019 and prove the asymptotic behaviour of partial Euler products (1.1) (1 χ(p)p−s)−1 − 6 pYx in the critical strip 0 < s < 1, assuming the Generalised Riemann Hypothesis (GRH) for this family. -
Generalized Riemann Hypothesis Léo Agélas
Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics. -
Counting Restricted Partitions of Integers Into Fractions: Symmetry and Modes of the Generating Function and a Connection to Ω(T)
Counting Restricted Partitions of Integers into Fractions: Symmetry and Modes of the Generating Function and a Connection to !(t) Z. Hoelscher and E. Palsson ∗ December 1, 2020 Abstract - Motivated by the study of integer partitions, we consider partitions of integers into fractions of a particular form, namely with constant denominators and distinct odd or even numerators. When numerators are odd, the numbers of partitions for integers smaller than the denominator form symmetric patterns. If the number of terms is restricted to h, then the nonzero terms of the generating function are unimodal, with the integer h having the most partitions. Such properties can be applied to a particular class of nonlinear Diophantine equations. We also examine partitions with even numerators. We prove that there are 2!(t) − 2 partitions of an integer t into fractions with the first x consecutive even integers for numerators and equal denominators of y, where 0 < y < x < t. We then use this to produce corollaries such as a Dirichlet series identity and an extension of the prime omega function to the complex plane, though this extension is not analytic everywhere. Keywords : Integer partitions; Restricted partitions; Partitions into fractions Mathematics Subject Classification (2020) : 05A17 1 Introduction Integer partitions are a classic part of number thoery. In the most general, unrestricted case, one seeks to express positive integers as the sum of smaller positive integers. Often the function p(n) is used to denote the count of the partitions of n. No simple formula for this is known, though a generating function can be written [1]. -
Two Elementary Formulae and Some Complicated Properties for Mertens Function3
TWO ELEMENTARY FORMULAE AND SOME COMPLICATED PROPERTIES FOR MERTENS FUNCTION RONG QIANG WEI Abstract. Two elementary formulae for Mertens function M(n) are obtained. With these formulae, M(n) can be calculated directly and simply, which can be easily imple- mented by computer. M(1) ∼ M(2 × 107) are calculated one by one. Based on these 2 × 107 samples, some of the complicated properties for Mertens function M(n), its 16479 zeros, the 10043 local maximum/minimum between two neighbor zeros, and the rela- tion with the cumulative sum of the squarefree integers, are understood numerically and empirically. Keywords: Mertens function Elementary formula Zeros Local maximum/minimum squarefree integers 1. Introduction The Mertens function M(n) is important in number theory, especially the calculation of this function when its argument is large. M(n) is defined as the cumulative sum of the M¨obius function µ(k) for all positive integers n, n (1) M(n)= µ(k) Xk=1 where the M¨obius function µ(k) is defined for a positive integer k by 1 k = 1 (2) µ(k)= 0 if k is divisible by a prime square ( 1)m if k is the product of m distinct primes − Sometimes the above definition can be extended to real numbers as follows: arXiv:1612.01394v2 [math.NT] 15 Dec 2016 (3) M(x)= µ(k) 1≤Xk≤x Furthermore, Mertens function has other representations. They are mainly shown in formula (4-7): 1 c+i∞ xs (4) M(x)= ds 2πi Zc−i∞ sζ(s) 1 2 RONG QIANG WEI where ζ(s) is the the Riemann zeta function, s is complex, and c> 1 (5) M(n)= exp(2πia) aX∈Fn where Fn is the Farey sequence of order n. -
Of the Riemann Hypothesis
A Simple Counterexample to Havil's \Reformulation" of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 10025 [email protected] The Riemann Hypothesis (RH) is \the greatest mystery in mathematics" [3]. It is a conjecture about the Riemann zeta function. The zeta function allows us to pass from knowledge of the integers to knowledge of the primes. In his book Gamma: Exploring Euler's Constant [4, p. 207], Julian Havil claims that the following is \a tantalizingly simple reformulation of the Rie- mann Hypothesis." Havil's Conjecture. If 1 1 X (−1)n X (−1)n cos(b ln n) = 0 and sin(b ln n) = 0 na na n=1 n=1 for some pair of real numbers a and b, then a = 1=2. In this note, we first state the RH and explain its connection with Havil's Conjecture. Then we show that the pair of real numbers a = 1 and b = 2π=ln 2 is a counterexample to Havil's Conjecture, but not to the RH. Finally, we prove that Havil's Conjecture becomes a true reformulation of the RH if his conclusion \then a = 1=2" is weakened to \then a = 1=2 or a = 1." The Riemann Hypothesis In 1859 Riemann published a short paper On the number of primes less than a given quantity [6], his only one on number theory. Writing s for a complex variable, he assumes initially that its real 1 part <(s) is greater than 1, and he begins with Euler's product-sum formula 1 Y 1 X 1 = (<(s) > 1): 1 ns p 1 − n=1 ps Here the product is over all primes p. -
The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1. -
Special Values for the Riemann Zeta Function
Journal of Applied Mathematics and Physics, 2021, 9, 1108-1120 https://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 Special Values for the Riemann Zeta Function John H. Heinbockel Old Dominion University, Norfolk, Virginia, USA How to cite this paper: Heinbockel, J.H. Abstract (2021) Special Values for the Riemann Zeta Function. Journal of Applied Mathematics The purpose for this research was to investigate the Riemann zeta function at and Physics, 9, 1108-1120. odd integer values, because there was no simple representation for these re- https://doi.org/10.4236/jamp.2021.95077 sults. The research resulted in the closed form expression Received: April 9, 2021 n 21n+ (2n) (−−4) π E2n 2ψ ( 34) Accepted: May 28, 2021 ζ (2nn+= 1) ,= 1,2,3, 21nn++ 21− Published: May 31, 2021 2( 2 12)( n) ! for representing the zeta function at the odd integer values 21n + for n a Copyright © 2021 by author(s) and Scientific Research Publishing Inc. positive integer. The above representation shows the zeta function at odd This work is licensed under the Creative positive integers can be represented in terms of the Euler numbers E2n and Commons Attribution International ψ (2n) 34 License (CC BY 4.0). the polygamma functions ( ) . This is a new result for this study area. http://creativecommons.org/licenses/by/4.0/ For completeness, this paper presents a review of selected properties of the Open Access Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. -
Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015
juan guillermo dueñas luna ASPECTSOFQUANTUMFIELDTHEORYAND NUMBERTHEORY ASPECTSOFQUANTUMFIELDTHEORYANDNUMBER THEORY juan guillermo dueñas luna Quantum Field Theory and Riemann Zeros Theoretical Physics Department. Brazilian Center For Physics Research. July 02, 2015. Juan Guillermo Dueñas Luna: Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015. supervisors: Nami Fux Svaiter. location: Rio de Janeiro. time frame: July 02, 2015. ABSTRACT The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1=2. Motivated by the Hilbert- Pólya conjecture which states that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory, a lot of activity has been devoted to establish a bridge between number theory and physics. Using the techniques of the spectral zeta function we show that prime numbers and the Rie- mann zeros have a different behaviour as the spectrum of a linear operator associated to a system with countable infinite number of degrees of freedom. To explore more connections between quantum field theory and number theory we studied three systems involving these two sequences of numbers. First, we discuss the renormalized zero-point energy for a massive scalar field such that the Riemann zeros appear in the spectrum of the vacuum modes. This scalar field is defined in a (d + 1)-dimensional flat space-time, assuming that one of the coordinates lies in an finite interval [0, a]. For even dimensional space-time we found a finite reg- ularized energy density, while for odd dimensional space-time we are forced to introduce mass counterterms to define a renormalized vacuum energy. -
The Mobius Function and Mobius Inversion
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Number Theory Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 The Mobius Function and Mobius Inversion Carl Lienert Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_number Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Number Theory Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Lienert, Carl, "The Mobius Function and Mobius Inversion" (2020). Number Theory. 12. https://digitalcommons.ursinus.edu/triumphs_number/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Number Theory by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Möbius Function and Möbius Inversion Carl Lienert∗ January 16, 2021 August Ferdinand Möbius (1790–1868) is perhaps most well known for the one-sided Möbius strip and, in geometry and complex analysis, for the Möbius transformation. In number theory, Möbius’ name can be seen in the important technique of Möbius inversion, which utilizes the important Möbius function. In this PSP we’ll study the problem that led Möbius to consider and analyze the Möbius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell, used the Möbius function to solve a different inversion problem.1 Finally, we’ll use Möbius inversion to solve a problem concerning Euler’s totient function. -
Abel's Lemma on Summation by Parts and Basic Hypergeometric Series
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Applied Mathematics 39 (2007) 490–514 www.elsevier.com/locate/yaama Abel’s lemma on summation by parts and basic hypergeometric series ✩ Wenchang Chu ∗ Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China Received 21 May 2006; accepted 9 February 2007 Available online 6 June 2007 Abstract Basic hypergeometric series identities are revisited systematically by means of Abel’s lemma on summa- tion by parts. Several new formulae and transformations are also established. The author is convinced that Abel’s lemma on summation by parts is a natural choice in dealing with basic hypergeometric series. © 2007 Elsevier Inc. All rights reserved. MSC: primary 33D15; secondary 05A30 Keywords: Abel’s lemma on summation by parts; Basic hypergeometric series In 1826, Abel [1] (see Bromwich [7, §20] and Knopp [22, §43] also) found the following ingenious lemma on summation by parts. For two arbitrary sequences {ak}k0 and {bk}k0,if we denote the partial sums by n An = ak where n = 0, 1, 2,... k=0 then for two natural numbers m and n with m n, there holds the relation: ✩ The work carried out during the visit to Center for Combinatorics, Nankai University (2005). * Current address: Dipartimento di Matematica, Università degli Studi di Lecce, Lecce-Arnesano PO Box 193, 73100 Lecce, Italy. Fax: 39 0832 297594. E-mail address: [email protected]. 0196-8858/$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.aam.2007.02.001 W. -
Generalizing Ruth-Aaron Numbers
Generalizing Ruth-Aaron Numbers Y. Jiang and S.J. Miller Abstract - Let f(n) be the sum of the prime divisors of n, counted with multiplicity; thus f(2020) = f(22 ·5·101) = 110. Ruth-Aaron numbers, or integers n with f(n) = f(n+1), have been an interest of many number theorists since the famous 1974 baseball game gave them the elegant name after two baseball stars. Many of their properties were first discussed by Erd}os and Pomerance in 1978. In this paper, we generalize their results in two directions: by raising prime factors to a power and allowing a small difference between f(n) and f(n + 1). We x(log log x)3 log log log x prove that the number of integers up to x with fr(n) = fr(n+1) is O (log x)2 , where fr(n) is the Ruth-Aaron function replacing each prime factor with its r−th power. We also prove that the density of n remains 0 if jfr(n) − fr(n + 1)j ≤ k(x), where k(x) is a function of x with relatively low rate of growth. Moreover, we further the discussion of the infinitude of Ruth-Aaron numbers and provide a few possible directions for future study. Keywords : Ruth-Aaron numbers; largest prime factors; multiplicative functions; rate of growth Mathematics Subject Classification (2020) : 11N05; 11N56; 11P32 1 Introduction On April 8, 1974, Henry Aarony hit his 715th major league home run, sending him past Babe Ruth, who had a 714, on the baseball's all-time list. -
Bounds of the Mertens Functions
Advances in Dynamical Systems and Applications. ISSN 0973-5321, Volume 16, Number 1, (2021) pp. 35-44 © Research India Publications https://dx.doi.org/10.37622/ADSA/16.1.2021.35-44 Bounds of the Mertens Functions Darrell Coxa, Sourangshu Ghoshb, Eldar Sultanowc aGrayson County College, Denison, TX 75020, USA bDepartment of Civil Engineering , Indian Institute of Technology Kharagpur, West Bengal, India cPotsdam University, 14482 Potsdam, Germany Abstract In this paper we derive new properties of Mertens function and discuss about a likely upper bound of the absolute value of the Mertens function √log(푥!) > |푀(푥)| when 푥 > 1. Using this likely bound we show that we have a sufficient condition to prove the Riemann Hypothesis. 1. INTRODUCTION We define the Mobius Function 휇(푘). Depending on the factorization of n into prime factors the function can take various values in {−1, 0, 1} 휇(푛) = 1 if n has even number of prime factors and it is also square- free(divisible by no perfect square other than 1) 휇(푛) = −1 if n has odd number of prime factors and it is also square-free 휇(푛) = 0 if n is divisible by a perfect square. 푛 Mertens function is defined as 푀(푛) = ∑푘=1 휇(푘) where 휇(푘) is the Mobius function. It can be restated as the difference in the number of square-free integers up to 푥 that have even number of prime factors and the number of square-free integers up to 푥 that have odd number of prime factors. The Mertens function rather grows very slowly since the Mobius function takes only the value 0, ±1 in both the positive and 36 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow negative directions and keeps oscillating in a chaotic manner.