Notes for the Course in Analytic Number Theory G. Molteni

Total Page:16

File Type:pdf, Size:1020Kb

Notes for the Course in Analytic Number Theory G. Molteni Notes for the course in Analytic Number Theory G. Molteni Fall 2019 revision 8.0 Disclaimer These are the notes I have written for the course in Analytical Number Theory in A.Y. 2011{'20. I wish to thank my former students (alphabetical order): Gu- glielmo Beretta, Alexey Beshenov, Alessandro Ghirardi, Davide Redaelli and Fe- derico Zerbini, for careful reading and suggestions improving these notes. I am the unique responsible for any remaining error in these notes. The image appearing on the cover shows a picture of the 1859 Riemann's scratch note where in 1932 C. Siegel recognized the celebrated Riemann{Siegel formula (an identity allowing to computed with extraordinary precision the values of the Riemann zeta function inside the critical strip). This image is a resized version of the image in H. M. Edwards Riemann's Zeta Function, Dover Publications, New York, 2001, page 156. The author has not been able to discover whether this image is covered by any Copyright and believes that it can appear here according to some fair use rule. He will remove it in case a Copyright infringement would be brought to his attention. Giuseppe Molteni This work is licensed under a Creative Commons Attribution-Non- Commercial-NoDerivatives 4.0 International License. This means that: (Attribu- tion) You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. (NonCommercial) You may not use the material for commercial purposes. (NoDerivatives) If you re- mix, transform, or build upon the material, you may not distribute the modified material. i Contents Disclaimer i Notation 1 Chapter 1. Prime number theorem 2 1.1. Preliminary facts: a warm-up 2 1.2. Two general formulas 5 1.3. The ring of arithmetical functions 13 1.4. Dirichlet series: as formal series 16 1.5. Dirichlet series: as complex functions 19 1.6. The analytic continuation of ζ(s) 28 1.7. Some elementary results 29 1.8. The Prime Number Theorem 39 Chapter 2. Primes in arithmetic progressions 61 Chapter 3. Sieve methods 71 3.1. Eratosthenes-Legendre's sieve 71 3.2. Selberg's Λ2-method 77 3.3. Sifting more classes 83 3.4. Two sets with positive density 91 Chapter 4. Sumsets 103 Chapter 5. Waring's problem 113 5.1. First step: cancellation in exponential sums 115 5.2. Second step: integral representation 120 Appendix. Bibliography 129 ii Notation • Let f and g : R ! [0; +1) functions. Then • f(x) = O(g(x)) as x ! x0 2 R := R [ {±∞} means that the quotient f(x)=g(x) is locally bounded in a neighborhood of x0, i.e. that there exist + a constant C 2 R and an open set U(x0) such that f(x)=g(x) ≤ C 8x 2 U(x0): • f(x) g(x) as x ! x0 2 R := R [ {±∞} is an equivalent notation for f(x) = O(g(x)). • f(x) = o(g(x)) as x ! x0 2 R := R [ {±∞} means that the quotient f(x)=g(x) tends to 0 as x ! x0 (in other words, the constant C in previous item can be taken arbitrarily small). • f(x) g(x) as x ! x0 2 R := R [ {±∞} means that both the quotients f(x)=g(x) and g(x)=f(x) are locally bounded in a neighborhood of x0, i.e. + that there exist a constant C 2 R and an open set U(x0) such that 1 g(x) ≤ f(x) ≤ Cg(x) 8x 2 U(x ): C 0 • f(x) = Ω(g(x)) as x ! x0 2 R := R [ {±∞} means that f(x) = O(g(x)) is false. This means that for every constant C 2 R and every open set U(x0) there exists x 2 U(x0) such that jf(x)j=jg(x)j > C: • Given x 2 R, the integer part of x is defined bxc := maxfn 2 Z: n ≤ xg. It must be not confused with dxe := minfn 2 Z: n ≥ xg. The fractional part of x is fxg := x − bxc (in signal processing this is called sawtooth func- tion). According to the definition, fxg is a 1-periodic function R ! R with discontinuities in every x 2 Z: lim fxg = 0; lim fxg = 1; 8n 2 Z: x!n+ x!n− • Usually we denote by s the complex argument of a complex function. In A. N. Th. it is customary to use σ and t to denote the real and the imaginary parts of s, respectively. In other words, s = σ + it with σ; t 2 R. • Given two integers m and n, mjn means that m divides n.(m; n) denotes their greatest common divisor, and [m; n] their smallest common multiple, so that mn = (m; n)[m; n]. • e(x) denotes the function e(x) := e2πix. 1 Chapter 1 Prime number theorem 1.1. Preliminary facts: a warm-up + Let P be the set of prime numbers. For every x 2 R , let π(x) := ]fp 2 P : p ≤ xg: How much large π(x) can be? Proposition 1.1 (Euclid) P is not finite, therefore π(x) ! 1 as x ! 1. Proof. Let p1; : : : ; pn be any set of primes. Let N := 1 + p1p2 ··· pn. N is an integer, thus it has a prime factor p. p is not equal to any pj, since N = 1 (mod pj). The argument can be modified in such a way to produce a quantitative result. Proposition 1.2 π(x) ln ln x as x ! 1. Proof. Let p1 = 2 < p2 < : : : be the complete set of primes (an infinite set, according to the previous result). We use the previous argument to prove that 2n−1 21−1 pn ≤ 2 for every n. In fact, the claim is true for n = 1 (because p1 = 2 ≤ 2 ). By induction on n and following the argument proving Proposition 1.1, we know that n−1 Y 2j−1 Pn−1 2j−1 2n−1−1 2n−1 pn ≤ 1 + p1p2 ··· pn−1 ≤ 1 + 2 = 1 + 2 j=1 = 1 + 2 ≤ 2 : j=1 For every x ≥ 2, let n be such that 22n−1 ≤ x < 22n . Then 2n−1 π(x) ≥ π(2 ) ≥ n ≥ log2 log2 x ln ln x: There are several alternative and elementary proofs of these facts. 2n P´olya. For every n 2 N let Fn := 2 +1, the nth Fermat number. These numbers are pairwise coprime, i.e. (Fn;Fm) = 1 8n 6= m: Proof. The sequence of Fermat numbers satisfies a kind of recursive formula; Qm−1 in fact k=0 Fj = Fm − 2 for every m ≥ 1, an identity which can be easily proved by induction. The formula shows that Fn divides Fm − 2 whenever n < m; in particular every prime dividing both Fn and Fm is also a factor of Fm and Fm − 2, hence it must be 2. Nevertheless, Fermat's numbers are odd, therefore they cannot have 2 as common factor. 2 CAP. 1: PRIME NUMBER THEOREM 3 The co-primality implies that every Fn has a special prime factor, pn, which divides Fn and does not divide every Fm with m 6= n. In particular, there are infinity many primes (because there are infinity many Fermat's numbers) and 2n−2 2n−1 the nth prime is lower than Fn−2 = 2 + 1 ≤ 2 as proved before. (Note that we use here the fact that p1 = 2 and p2 = 3 = F0). n P´olya (variation). For every n 2 N let Mn := 2 − 1, the nth Mersenne num- m−n ber. These numbers satisfy the relation Mm = 2 Mn + Mm−n for every m ≥ n, so that the greatest common divisor of Mm and Mn is M(m;n). Let p1 = 2; : : : ; pk be any set of distinct primes. Then Mp1 ;:::;Mpk are pairwise coprime, therefore there are at least k distinct odd prime numbers (because every Mn is an odd number), in particular there is at least one odd prime num- ber which is greater than pk, and hence one more prime. The argument proves pn that if 2 = p1 < p2 < p3 < ··· is the sequence of prime, then pn+1 < 2 . This upper bound for pn can be used to produce a lower bound for π(x), but of incredibly low quality. Erd}os. Every integer n can be written in a unique way as a product of a square 2 m and a squarefree q. Fixp x > 2 and apply that decomposition to every integer n ≤ x. There are x possible values for m, and 2π(x) values for q, at most. Hence p π(x) bxc = ]fn 2 N: n ≤ xg ≤ ]fmg · ]fqg ≤ x · 2 implying that π(x) ln x. Note that also that this simple argument already improves Proposition 1.2. Euler. Consider the product Y Y 1 1 1 (1 − 1=p)−1 = 1 + + + + ··· : p p2 p3 p≤x p≤x Every integer n can be written in a unique way as product of prime powers and when n is ≤ x then also the primes appearing in its factorization are ≤ x (trivial). Therefore the previous product gives Y Y 1 1 1 X 1 (1.1) (1 − 1=p)−1 = 1 + + + + ··· ≥ : p p2 p3 n p≤x p≤x n≤x The right hand side diverges in x, hence this inequality already proves the existence of infinitely many primes: only in this case the product appearing to the left hand side diverges.
Recommended publications
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • HOMOTECIA Nº 6-15 Junio 2017
    HOMOTECIA Nº 6 – Año 15 Martes, 1º de Junio de 2017 1 Entre las expectativas futuras que se tienen sobre un docente en formación, está el considerar como indicativo de que logrará realizarse como tal, cuando evidencia confianza en lo que hace, cuando cree en sí mismo y no deja que su tiempo transcurra sin pro pósitos y sin significado. Estos son los principios que deberán pautar el ejercicio de su magisterio si aspira tener éxito en su labor, lo cual mostrará mediante su afán por dar lo bueno dentro de sí, por hacer lo mejor posible, por comprometerse con el porvenir de quienes confiadamente pondrán en sus manos la misión de enseñarles. Pero la responsabilidad implícita en este proceso lo debería llevar a considerar seriamente algunos GIACINTO MORERA (1856 – 1907 ) aspectos. Obtener una acreditación para enseñar no es un pergamino para exhib ir con petulancia ante familiares y Nació el 18 de julio de 1856 en Novara, y murió el 8 de febrero de 1907, en Turín; amistades. En otras palabras, viviendo en el mundo educativo, es ambas localidades en Italia. asumir que se produjo un cambio significativo en la manera de Matemático que hizo contribuciones a la dinámica. participar en este: pasó de ser guiado para ahora guiar. No es que no necesite que se le orie nte como profesional de la docencia, esto es algo que sucederá obligatoriamente a nivel organizacional, Giacinto Morera , hijo de un acaudalado hombre de pero el hecho es que adquirirá una responsabilidad mucho mayor negocios, se graduó en ingeniería y matemáticas en la porque así como sus preceptores universitarios tuvieron el compromiso de formarlo y const ruirlo cultural y Universidad de Turín, Italia, habiendo asistido a los académicamente, él tendrá el mismo compromiso de hacerlo con cursos por Enrico D'Ovidio, Angelo Genocchi y sus discípulos, sea cual sea el nivel docente donde se desempeñe.
    [Show full text]
  • Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015
    juan guillermo dueñas luna ASPECTSOFQUANTUMFIELDTHEORYAND NUMBERTHEORY ASPECTSOFQUANTUMFIELDTHEORYANDNUMBER THEORY juan guillermo dueñas luna Quantum Field Theory and Riemann Zeros Theoretical Physics Department. Brazilian Center For Physics Research. July 02, 2015. Juan Guillermo Dueñas Luna: Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015. supervisors: Nami Fux Svaiter. location: Rio de Janeiro. time frame: July 02, 2015. ABSTRACT The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1=2. Motivated by the Hilbert- Pólya conjecture which states that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory, a lot of activity has been devoted to establish a bridge between number theory and physics. Using the techniques of the spectral zeta function we show that prime numbers and the Rie- mann zeros have a different behaviour as the spectrum of a linear operator associated to a system with countable infinite number of degrees of freedom. To explore more connections between quantum field theory and number theory we studied three systems involving these two sequences of numbers. First, we discuss the renormalized zero-point energy for a massive scalar field such that the Riemann zeros appear in the spectrum of the vacuum modes. This scalar field is defined in a (d + 1)-dimensional flat space-time, assuming that one of the coordinates lies in an finite interval [0, a]. For even dimensional space-time we found a finite reg- ularized energy density, while for odd dimensional space-time we are forced to introduce mass counterterms to define a renormalized vacuum energy.
    [Show full text]
  • Real Proofs of Complex Theorems (And Vice Versa)
    REAL PROOFS OF COMPLEX THEOREMS (AND VICE VERSA) LAWRENCE ZALCMAN Introduction. It has become fashionable recently to argue that real and complex variables should be taught together as a unified curriculum in analysis. Now this is hardly a novel idea, as a quick perusal of Whittaker and Watson's Course of Modern Analysis or either Littlewood's or Titchmarsh's Theory of Functions (not to mention any number of cours d'analyse of the nineteenth or twentieth century) will indicate. And, while some persuasive arguments can be advanced in favor of this approach, it is by no means obvious that the advantages outweigh the disadvantages or, for that matter, that a unified treatment offers any substantial benefit to the student. What is obvious is that the two subjects do interact, and interact substantially, often in a surprising fashion. These points of tangency present an instructor the opportunity to pose (and answer) natural and important questions on basic material by applying real analysis to complex function theory, and vice versa. This article is devoted to several such applications. My own experience in teaching suggests that the subject matter discussed below is particularly well-suited for presentation in a year-long first graduate course in complex analysis. While most of this material is (perhaps by definition) well known to the experts, it is not, unfortunately, a part of the common culture of professional mathematicians. In fact, several of the examples arose in response to questions from friends and colleagues. The mathematics involved is too pretty to be the private preserve of specialists.
    [Show full text]
  • Prime Numbers and the Riemann Hypothesis
    Prime numbers and the Riemann hypothesis Tatenda Kubalalika October 2, 2019 ABSTRACT. Denote by ζ the Riemann zeta function. By considering the related prime zeta function, we demonstrate in this note that ζ(s) 6= 0 for <(s) > 1=2, which proves the Riemann hypothesis. Keywords and phrases: Prime zeta function, Riemann zeta function, Riemann hypothesis, proof. 2010 Mathematics Subject Classifications: 11M26, 11M06. Introduction. Prime numbers have fascinated mathematicians since the ancient Greeks, and Euclid provided the first proof of their infinitude. Central to this subject is some innocent-looking infinite series known as the Riemann zeta function. This is is a function of the complex variable s, defined in the half-plane <(s) > 1 by 1 X ζ(s) := n−s n=1 and in the whole complex plane by analytic continuation. Euler noticed that the above series can Q −s −1 be expressed as a product p(1 − p ) over the entire set of primes, which entails that ζ(s) 6= 0 for <(s) > 1. As shown by Riemann [2], ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue 1, and satisfies the functional equation ξ(s) = ξ(1 − s), 1 −z=2 1 R 1 −x w−1 where ξ(z) = 2 z(z − 1)π Γ( 2 z)ζ(z) and Γ(w) = 0 e x dx. From the functional equation and the relationship between Γ and the sine function, it can be easily noticed that 8n 2 N one has ζ(−2n) = 0, hence the negative even integers are referred to as the trivial zeros of ζ in the literature.
    [Show full text]
  • Naming Infinity: a True Story of Religious Mysticism And
    Naming Infinity Naming Infinity A True Story of Religious Mysticism and Mathematical Creativity Loren Graham and Jean-Michel Kantor The Belknap Press of Harvard University Press Cambridge, Massachusetts London, En gland 2009 Copyright © 2009 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Graham, Loren R. Naming infinity : a true story of religious mysticism and mathematical creativity / Loren Graham and Jean-Michel Kantor. â p. cm. Includes bibliographical references and index. ISBN 978-0-674-03293-4 (alk. paper) 1. Mathematics—Russia (Federation)—Religious aspects. 2. Mysticism—Russia (Federation) 3. Mathematics—Russia (Federation)—Philosophy. 4. Mathematics—France—Religious aspects. 5. Mathematics—France—Philosophy. 6. Set theory. I. Kantor, Jean-Michel. II. Title. QA27.R8G73 2009 510.947′0904—dc22â 2008041334 CONTENTS Introduction 1 1. Storming a Monastery 7 2. A Crisis in Mathematics 19 3. The French Trio: Borel, Lebesgue, Baire 33 4. The Russian Trio: Egorov, Luzin, Florensky 66 5. Russian Mathematics and Mysticism 91 6. The Legendary Lusitania 101 7. Fates of the Russian Trio 125 8. Lusitania and After 162 9. The Human in Mathematics, Then and Now 188 Appendix: Luzin’s Personal Archives 205 Notes 212 Acknowledgments 228 Index 231 ILLUSTRATIONS Framed photos of Dmitri Egorov and Pavel Florensky. Photographed by Loren Graham in the basement of the Church of St. Tatiana the Martyr, 2004. 4 Monastery of St. Pantaleimon, Mt. Athos, Greece. 8 Larger and larger circles with segment approaching straight line, as suggested by Nicholas of Cusa. 25 Cantor ternary set.
    [Show full text]
  • Complex Analysis
    8 Complex Representations of Functions “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817-1862) 8.1 Complex Representations of Waves We have seen that we can determine the frequency content of a function f (t) defined on an interval [0, T] by looking for the Fourier coefficients in the Fourier series expansion ¥ a0 2pnt 2pnt f (t) = + ∑ an cos + bn sin . 2 n=1 T T The coefficients take forms like 2 Z T 2pnt an = f (t) cos dt. T 0 T However, trigonometric functions can be written in a complex exponen- tial form. Using Euler’s formula, which was obtained using the Maclaurin expansion of ex in Example A.36, eiq = cos q + i sin q, the complex conjugate is found by replacing i with −i to obtain e−iq = cos q − i sin q. Adding these expressions, we have 2 cos q = eiq + e−iq. Subtracting the exponentials leads to an expression for the sine function. Thus, we have the important result that sines and cosines can be written as complex exponentials: 286 partial differential equations eiq + e−iq cos q = , 2 eiq − e−iq sin q = .( 8.1) 2i So, we can write 2pnt 1 2pint − 2pint cos = (e T + e T ).
    [Show full text]
  • 4 Complex Analysis
    4 Complex Analysis “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817 - 1862) We have seen that we can seek the frequency content of a signal f (t) defined on an interval [0, T] by looking for the the Fourier coefficients in the Fourier series expansion In this chapter we introduce complex numbers and complex functions. We a ¥ 2pnt 2pnt will later see that the rich structure of f (t) = 0 + a cos + b sin . 2 ∑ n T n T complex functions will lead to a deeper n=1 understanding of analysis, interesting techniques for computing integrals, and The coefficients can be written as integrals such as a natural way to express analog and dis- crete signals. 2 Z T 2pnt an = f (t) cos dt. T 0 T However, we have also seen that, using Euler’s Formula, trigonometric func- tions can be written in a complex exponential form, 2pnt e2pint/T + e−2pint/T cos = . T 2 We can use these ideas to rewrite the trigonometric Fourier series as a sum over complex exponentials in the form ¥ 2pint/T f (t) = ∑ cne , n=−¥ where the Fourier coefficients now take the form Z T −2pint/T cn = f (t)e dt.
    [Show full text]
  • Sunti Delle Conferenze
    Sunti delle Conferenze Analisi complessa a Pisa, 1860-1900 UMBERTO BOTTAZZINI (Università di Milano) Nel 1859 Enrico Betti inaugura gli studi di analisi complessa a Pisa (e di fatto in Italia) pubblicando la traduzione italiana della Inauguraldissertation (1851) di Riemann. L’incontro con il grande matematico conosciuto l’anno prima a Göttingen segna una svolta nella carriera scientifica di Betti, che fa dell’analisi complessa l’oggetto delle sue lezioni e delle sue pubblicazioni (1860/61 e 1862) che incontrano l’approvazione di Riemann, durante il suo soggiorno in Italia. Nella conferenza saranno discussi i contributi all’analisi complessa di Betti, Dini e Bianchi. Ulisse Dini raccolse l’eredità del maestro dapprima in articoli (1870/71, 1871/73, 1881) che suscitano l’interesse della comunità internazionale, e poi in lezioni litografate (1890) che hanno offerto a Luigi Bianchi il modello e il riferimento iniziale per le sue celebri lezioni sulla teoria delle funzioni di variabile complessa in due volumi, apparse prima in versione litografata (1898/99) e poi a stampa in diverse edizioni. Il periodo romano di Luigi Cremona: tra Statica Grafica e Geometria Algebrica, la Biblioteca Nazionale, i Lincei, il Senato ALDO BRIGAGLIA (Università di Palermo) Il periodo romano (1873 – 1903) è considerato il meno produttivo, dal punto di vista scientifico, della vita di Luigi Cremona. Un periodo quasi unicamente dedicato agli aspetti politico – istituzionali della sua attività. Senza voler capovolgere questo giudizio consolidato, anzi sottolineando
    [Show full text]
  • A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture
    A FRIENDLY INTRO TO SIEVES WITH A LOOK TOWARDS RECENT PROGRESS ON THE TWIN PRIMES CONJECTURE DAVID LOWRY-DUDA This is an extension and background to a talk I gave on 9 October 2013 to the Brown Graduate Student Seminar, called `A friendly intro to sieves with a look towards recent progress on the twin primes conjecture.' During the talk, I mention several sieves, some with a lot of detail and some with very little detail. I also discuss several results and built upon many sources. I'll provide missing details and/or sources for additional reading here. Furthermore, I like this talk, so I think it's worth preserving. 1. Introduction We talk about sieves and primes. Long, long ago, Euclid famously proved the in- finitude of primes (≈ 300 B.C.). Although he didn't show it, the stronger statement that the sum of the reciprocals of the primes diverges is true: X 1 ! 1; p p where the sum is over primes. Proof. Suppose that the sum converged. Then there is some k such that 1 X 1 1 < : pi 2 i=k+1 Qk Suppose that Q := i=1 pi is the product of the primes up to pk. Then the integers 1 + Qn are relatively prime to the primes in Q, and so are only made up of the primes pk+1;:::. This means that 1 !t X 1 X X 1 ≤ < 2; 1 + Qn pi n=1 t≥0 i>k where the first inequality is true since all the terms on the left appear in the middle (think prime factorizations and the distributive law), and the second inequality is true because it's bounded by the geometric series with ratio 1=2.
    [Show full text]
  • Stewart I. Visions of Infinity.. the Great Mathematical Problems
    VISIONS OF INFINITY Also by Ian Stewart Concepts of Modern Mathematics Game, Set, and Math The Problems of Mathematics Does God Play Dice? Another Fine Math You’ve Got Me Into Fearful Symmetry (with Martin Golubitsky) Nature’s Numbers From Here to Infinity The Magical Maze Life’s Other Secret Flatterland What Shape Is a Snowflake? The Annotated Flatland Math Hysteria The Mayor of Uglyville’s Dilemma Letters to a Young Mathematician Why Beauty Is Truth How to Cut a Cake Taming the Infinite/The Story of Mathematics Professor Stewart’s Cabinet of Mathematical Curiosities Professor Stewart’s Hoard of Mathematical Treasures Cows in the Maze Mathematics of Life In Pursuit of the Unknown with Terry Pratchett and Jack Cohen The Science of Discworld The Science of Discworld II: The Globe The Science of Discworld III: Darwin’s Watch with Jack Cohen The Collapse of Chaos Figments of Reality Evolving the Alien/What Does a Martian Look Like? Wheelers (science fiction) Heaven (science fiction) VISIONS OF INFINITY The Great Mathematical Problems IAN STEWART A Member of the Perseus Books Group New York Copyright © 2013 by Joat Enterprises Published by Basic Books, A Member of the Perseus Books Group All rights reserved. Printed in the United States of America. No part of this book may be reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 250 West 57th Street, New York, NY 10107. Books published by Basic Books are available at special discounts for bulk purchases in the United States by corporations, institutions, and other organizations.
    [Show full text]
  • Series of Reciprocal Powers of K-Almost Primes
    SERIES OF RECIPROCAL POWERS OF k−ALMOST PRIMES RICHARD J. MATHAR Abstract. Sums over inverse s-th powers of semiprimes and k-almost primes are transformed into sums over products of powers of ordinary prime zeta functions. Multinomial coefficients known from the cycle decomposition of permutation groups play the role of expansion coefficients. Founded on a known convergence acceleration for the ordinary prime zeta functions, the sums and first derivatives are tabulated with high precision for indices k = 2,..., 6 and integer powers s = 2,..., 8. 1. Overview Series over rational polynomials evaluated at integer arguments contain sub- series summing over integers classified by the count of their prime factors. The core example is the Riemann zeta function ζ which accumulates the prime zeta function P1 plus what we shall define the almost-prime zeta functions Pk (Section 2). The central observation of this manuscript is that the almost-prime zeta functions are combinatorial sums over the prime zeta function (Section 3). Since earlier work by Cohen, Sebah and Gourdon has pointed at efficient numerical algorithms to compute P1, series over reciprocal almost-primes—which may suffer from slow convergence in their defining format—may be computed efficiently by reference to the P1. In consequence, any converging series over the positive integers which has a Taylor expansion in reciprocal powers of these integers splits into k-almost prime components. Section 4 illustrates this for the most basic formats. Number theory as such will not be advanced. The meromorphic landscape of the prime zeta functions as a function of their main variable appears to be more complicated than what is known for their host, the Riemann zeta function; so only some remarks on the calculation of first derivatives are dropped.
    [Show full text]