Sirtuins in Metabolism, DNA Repair and Cancer Zhen Mei1,2†, Xian Zhang1,2†, Jiarong Yi1,2, Junjie Huang1,2, Jian He1,2 and Yongguang Tao1,2*

Total Page:16

File Type:pdf, Size:1020Kb

Sirtuins in Metabolism, DNA Repair and Cancer Zhen Mei1,2†, Xian Zhang1,2†, Jiarong Yi1,2, Junjie Huang1,2, Jian He1,2 and Yongguang Tao1,2* Mei et al. Journal of Experimental & Clinical Cancer Research (2016) 35:182 DOI 10.1186/s13046-016-0461-5 REVIEW Open Access Sirtuins in metabolism, DNA repair and cancer Zhen Mei1,2†, Xian Zhang1,2†, Jiarong Yi1,2, Junjie Huang1,2, Jian He1,2 and Yongguang Tao1,2* Abstract The mammalian sirtuin family has attracted tremendous attention over the past few years as stress adaptors and post-translational modifier. They have involved in diverse cellular processes including DNA repair, energy metabolism, and tumorigenesis. Notably, genomic instability and metabolic reprogramming are two of characteristic hallmarks in cancer. In this review, we summarize current knowledge on the functions of sirtuins mainly regarding DNA repair and energy metabolism, and further discuss the implication of sirtuins in cancer specifically by regulating genome integrity and cancer-related metabolism. Keywords: Sirtuin, DNA damage, Metabolism, Cancer, Post-translation modification Background NAD+ changes, sirtuins are proposed to work as stress Sirtuins, the highly conserved NAD + −dependent en- adaptors. Meanwhile, given their diverse enzymatic ac- zymes, are mammalian homologs of the yeast Sir2 gene tivities, they are described to play critical roles in regu- which has been known to promote replicative life span lating post-translational modifications (PTMs), among and mediate gene silencing in yeast [1]. The sirtuin fam- which acetylation is an important form. Sirtuins deacety- ily comprises seven proteins denoted as SIRT1-SIRT7, late a multitude of targets including histones, transcrip- which share a highly conserved NAD + −binding cata- tion factors, and metabolic enzymes. Taken together, lytic domain but vary in N and C-termini (Fig. 1). The sirtuins have been implicated in numerous cellular divergent terminal extensions account for their various processes including stress response, DNA repair, energy subcellular localization, enzymatic activity and binding metabolism, and tumorigenesis [8, 9]. targets. SIRT1, SIRT6, and SIRT7, are chiefly nuclear Aberrant cellular metabolism in cancer cells character- proteins, while SIRT3, SIRT4 and SIRT5 predominantly ized by elevated aerobic glycolysis and extensive glutami- reside in mitochondria and SIRT2 is primarily cytosolic nolysis [10] is essential to fuel uncontrolled proliferation (Fig. 1). But some of theses proteins are reported to and malignant tumor growth. The Warburg effect, translocate from their typical compartments under spe- which describes that tumor cells preferentially use glu- cific circumstances [2–4]. Besides the well-recognized cose for aerobic glycolysis in the presence of ample oxy- deacetylase function, sirtuins have also evolved as mono gen [11], has emerged as one of hallmarks of cancer. ADP ribosyltransferase, lipoamidase (SIRT4), demalony- Even though originally thought to be energy insufficient, lase and desuccinylase (SIRT5) [5, 6]. Warburg effect is now widely accepted to confer rapid The host cells are constantly subjected to oxidative, proliferation and invasive properties to tumor cells genotoxic and metabolic stress. The ratio of NAD+/ [12–14]. In parallel, many cancer cells exhibits enhanced NADH is correlated with stress resistance, oxidative glutamine metabolism and cannot survive in the absence metabolism and DNA repair [7]. Sensing intracellular of glutamine [15]. Recent studies have shown that a suc- cession of well-established oncogenic cues, including Myc, * Correspondence: [email protected] Ras or mammalian target of rapamycin complex 1 †Equal contributors (mTORC1) pathways play imperative roles in inducing 1 Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of glutaminolysis [16–18]. Besides metabolic reprogram- Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China ming, deregulated DNA-repair pathways and subsequent 2Cancer Research Institute, School of Basic Medicine, Central South genome instability appears to facilitate the acquisition of University, Changsha, Hunan 410078, China © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Mei et al. Journal of Experimental & Clinical Cancer Research (2016) 35:182 Page 2 of 14 Name Structure Location 244 498 SIRT1 747aa Nucleus 65 340 SIRT2 389aa Cytoplasm 126 382 399aa Mitochondria SIRT3 45 314 314aa Mitochondria SIRT4 41 309 SIRT5 310aa Mitochondria 35 274 SIRT6 355aa Nucleus 90 331 SIRT7 400aa Nucleus Fig. 1 Schematic representation of seven mammalian sirtuins. The shaded area represents NAD+ - dependent catalytic domain. aa, amino acids tumorigenic mutations propitious to tumor growth and transcription of glycolytic genes by directly deacetylating cancer progression [19, 20]. transcription factor HIF1α [24] and also inhibits glycolytic Mounting evidence has shed light on that sirtuins play enzyme PGAM1 (phosphoglycerate mutase 1) through diverse parts in cancer [1]. In this review, we summarize deactylation [25]. SIRT1 is also implicated in glucose me- an overview and update on the function of sirtuins in tabolism by functioning as an insulin sensitizer. Through metabolism and DNA repair, and further touch on their transcriptionally repressing the uncoupling protein 2 roles in cancer mainly by affecting genome integrity and (UCP2), SIRT1 positively modulates glucose-stimulated in- cancer-associated metabolism. sulin secretion [26]. Accumulating evidence suggests that SIRT1 and SIRT1 activators can prevent and reverse insulin Sirtuins in metabolism resistance and diabetic complications, proven to be a prom- Glucose metabolism ising therapeutic target in type 2 diabetes (T2D) [27–30]. Glucose metabolism encompasses several processes implicating glucose uptake, utilization, storage and out- SIRT2 put, which needs elaborate coordination among the Compared to SIRT1, SIRT2 is predominantly a cytoplas- regulating hormone insulin and its counterpart such as mic protein and pretty abundant in adipocytes. SIRT2 glucagon. Sirtuins are verified to exert various impacts activates the rate-limiting enzyme phosphoenolpyruvate on gluconeogenesis, glycolysis, insulin secretion and sen- carboxykinase (PEPCK) via deacetylation and enhances sitivity bearing therapeutic potential to several metabolic gluconeogenesis during times of glucose deprivation diseases (Fig. 2). [31]. Meanwhile recent studies have proposed that, in SIRT1 regard to insulin sensitivity, SIRT2 may act specific and opposing roles in different tissues [32]. SIRT1 is the most conserved mammalian NAD + − dependent protein deacetylase that has emerged as a regulator of glucose metabolism. As for gluconeogenesis, SIRT3, SIRT4, and SIRT5 the role of SIRT1 is regarded as dual and intricate. In a Primarily located in mitochondria, SIRT3, SIRT4, and short-term fasting phase, SIRT1 induces decreased hep- SIRT5 sense and regulate the energy status in this organ- atic glucose production by suppressing CRTC2 (CREB- elle. Activating glutamate dehydrogenase (GDH), SIRT3 regulated transcription coactivator 2), a key mediator of facilitates gluconeogenesis from amino acids [33]. In early phase gluconeogenesis [21]. With the fasting phase addition, SIRT3 indirectly destabilizes transcription prolonged, SIRT1 deacetylates and activates both the factor HIF1α and subsequently inhibits glycolysis and transcription factor FOXO1 (forkhead box protein O1) glucose oxidation [34]. Intriguingly, recent studies have and its co-activator PGC1α (Peroxisome proliferator- shown that SIRT3 levels in pancreatic islets are reduced activated receptor gamma coactivator 1 α) [22, 23], in patients afflicted with type 2 diabetes [35] and SIRT3 which reinforces the gluconeogenic transcriptional pro- overexpression in pancreatic β-cells promotes insulin gram. In respect to glycolysis, SIRT1 attenuates the secretion and abrogates endoplasmic reticulum (ER) Mei et al. Journal of Experimental & Clinical Cancer Research (2016) 35:182 Page 3 of 14 glucose A gluconeogenensis glycolysis Phosphoenolpyruvate ( PEP) glutamine Cytosol SIRT2 PEPCK pyruvate oxaloacetate Mitochondria malate pyruvate GLS PDH SIRT4 PEP acetyl-coA glutamate oxaloacetate citrate SIRT4 GDH TCA Cycle isocitrate malate fumarate -ketoglutarate SIRT3 succinate B SIRT1 SIRT1 PGC1 SIRT6 FOXO1 Gluconeogenic genes HIF Nucleus Glycolytic genes SIRT1 SIRT6 Fig. 2 Overview of sirtuins in glucose metabolism. Selected pathways in nucleus, cytosol and mitochondria are depicted. a Located in cytoplasm, SIRT2 deacetylates the rate-limiting enzyme PEPCK and promotes gluconeogenesis during low nutrient condition. Both SIRT3 and SIRT4 target GDH in mitochondria but their enzymatic activities seem to be opposite. Besides GDH, SIRT4 also reduces PDH activity which converts pyruvate to acetyl CoA. SIRT5 facilitates glycolysis via glycolytic enzyme GAPDH and may disrupt glutamine metabolism through GLS. b In respect to the nuclear sirtuins, both SIRT1 and SIRT6 suppress the transcription factor HIF1α through different manners and subsequently attenuate
Recommended publications
  • Sirt7 Promotes Adipogenesis in the Mouse by Inhibiting Autocatalytic
    Sirt7 promotes adipogenesis in the mouse by inhibiting PNAS PLUS autocatalytic activation of Sirt1 Jian Fanga,1, Alessandro Iannia,1, Christian Smolkaa,b, Olesya Vakhrushevaa,c, Hendrik Noltea,d, Marcus Krügera,d, Astrid Wietelmanna, Nicolas G. Simonete, Juan M. Adrian-Segarraa, Alejandro Vaqueroe, Thomas Brauna,2, and Eva Bobera,2 aDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; bMedizin III Kardiologie und Angiologie, Universitätsklinikum Freiburg, D-79106 Freiburg, Germany; cDepartment of Medicine, Hematology/Oncology, Goethe University, D-60595 Frankfurt am Main, Germany; dInstitute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Köln, Germany; and eCancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain Edited by C. Ronald Kahn, Section of Integrative Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved August 23, 2017 (received for review April 26, 2017) Sirtuins (Sirt1–Sirt7) are NAD+-dependent protein deacetylases/ adipogenesis and accumulation of lipids in 3T3-L1 adipocytes by ADP ribosyltransferases, which play decisive roles in chromatin deacetylation of FOXO1, which represses PPARγ (10). The role of silencing, cell cycle regulation, cellular differentiation, and metab- Sirt6 in the regulation of adipogenic differentiation is less clear olism. Different sirtuins control similar cellular processes, suggest- although it is known that Sirt6 knockout (KO) mice suffer from ing a coordinated mode of action but information about potential reduced adipose tissue stores, while Sirt6 overexpressing mice cross-regulatory interactions within the sirtuin family is still lim- are protected against high-fat diet-induced obesity (11, 12).
    [Show full text]
  • Genetic Determinants Underlying Rare Diseases Identified Using Next-Generation Sequencing Technologies
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2018 1:30 PM Genetic determinants underlying rare diseases identified using next-generation sequencing technologies Rosettia Ho The University of Western Ontario Supervisor Hegele, Robert A. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Rosettia Ho 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Medical Genetics Commons Recommended Citation Ho, Rosettia, "Genetic determinants underlying rare diseases identified using next-generation sequencing technologies" (2018). Electronic Thesis and Dissertation Repository. 5497. https://ir.lib.uwo.ca/etd/5497 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Rare disorders affect less than one in 2000 individuals, placing a huge burden on individuals, families and the health care system. Gene discovery is the starting point in understanding the molecular mechanisms underlying these diseases. The advent of next- generation sequencing has accelerated discovery of disease-causing genetic variants and is showing numerous benefits for research and medicine. I describe the application of next-generation sequencing, namely LipidSeq™ ‒ a targeted resequencing panel for the identification of dyslipidemia-associated variants ‒ and whole-exome sequencing, to identify genetic determinants of several rare diseases. Utilization of next-generation sequencing plus associated bioinformatics led to the discovery of disease-associated variants for 71 patients with lipodystrophy, two with early-onset obesity, and families with brachydactyly, cerebral atrophy, microcephaly-ichthyosis, and widow’s peak syndrome.
    [Show full text]
  • The Controversial Role of Sirtuins in Tumorigenesis — SIRT7 Joins The
    npg 10 Cell Research (2013) 23:10-12. npg © 2013 IBCB, SIBS, CAS All rights reserved 1001-0602/13 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr The controversial role of Sirtuins in tumorigenesis – SIRT7 joins the debate Ling Li1, Ravi Bhatia1 1Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA Cell Research (2013) 23:10-12. doi:10.1038/cr.2012.112; published online 31 July 2012 Sirtuins are NAD-dependent function of SIRT7 is the least well un- first deacetylase with selectivity for the deacetylases that are conserved derstood so far. SIRT7 lacks conserved H3K18Ac modification. Low levels of from yeast to mammals. A new report amino acids within the catalytic domain H3K18Ac were previously shown to sheds light on the function of SIRT7, associated with deacetylase activity, and predict a higher risk of prostate cancer the least understood member of the although suggested to deacetylate the recurrence, and poor prognosis in lung, Sirtuin family by identifying its locus- tumor suppressor p53 (Figure 1) [3], has kidney and pancreatic cancers [8]. Us- specific H3K18 deacetylase activity, generally been considered to have weak ing chromatin immunoprecipitation and linking it to maintenance of cellu- or undetectable deacetylase activity [4, sequencing to study the genome-wide lar transformation in malignancies. 5]. There is evidence that SIRT7 can me- localization of SIRT7, Barber et al. Sirtuins are NAD-dependent deacety- diate protein interactions regulating the found that SIRT7 is enriched at promot- lases that have been linked to longev- RNA Pol I machinery [6].
    [Show full text]
  • Selection Signatures in Two Oldest Russian Native Cattle Breeds Revealed Using High- Density Single Nucleotide Polymorphism Analysis
    PLOS ONE RESEARCH ARTICLE Selection signatures in two oldest Russian native cattle breeds revealed using high- density single nucleotide polymorphism analysis Natalia Anatolievna Zinovieva1*, Arsen Vladimirovich Dotsev1, Alexander Alexandrovich Sermyagin1, Tatiana Evgenievna Deniskova1, Alexandra 1 1 2 Sergeevna Abdelmanova , Veronika Ruslanovna KharzinovaID , Johann SoÈ lkner , a1111111111 Henry Reyer3, Klaus Wimmers3, Gottfried Brem1,4 a1111111111 a1111111111 1 L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia, 2 Division of Livestock Sciences, University of a1111111111 Natural Resources and Life Sciences, Vienna, Austria, 3 Institute of Genome Biology, Leibniz Institute for a1111111111 Farm Animal Biology [FBN], Dummerstorf, Germany, 4 Institute of Animal Breeding and Genetics, University of Veterinary Medicine [VMU], Vienna, Austria * [email protected] OPEN ACCESS Citation: Zinovieva NA, Dotsev AV, Sermyagin AA, Abstract Deniskova TE, Abdelmanova AS, Kharzinova VR, et al. (2020) Selection signatures in two oldest Native cattle breeds can carry specific signatures of selection reflecting their adaptation to Russian native cattle breeds revealed using high- the local environmental conditions and response to the breeding strategy used. In this density single nucleotide polymorphism analysis. study, we comprehensively analysed high-density single nucleotide polymorphism (SNP) PLoS ONE 15(11): e0242200. https://doi.org/ genotypes
    [Show full text]
  • A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
    biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings
    [Show full text]
  • Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ Between Normal Donors and Infertile Women
    International Journal of Molecular Sciences Article Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women Rebeca González-Fernández 1, Rita Martín-Ramírez 1, Deborah Rotoli 1,2, Jairo Hernández 3, Frederick Naftolin 4, Pablo Martín-Vasallo 1 , Angela Palumbo 3,4 and Julio Ávila 1,* 1 Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; [email protected] (R.G.-F.); [email protected] (R.M.-R.); [email protected] (D.R.); [email protected] (P.M.-V.) 2 Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, 80131 Naples, Italy 3 Centro de Asistencia a la Reproducción Humana de Canarias, 38202 La Laguna, Tenerife, Spain; jairoh@fivap.com (J.H.); apalumbo@fivap.com (A.P.) 4 Department of Obstetrics and Gynecology, New York University, New York, NY 10016, USA; [email protected] * Correspondence: [email protected] Received: 13 November 2019; Accepted: 29 December 2019; Published: 31 December 2019 Abstract: Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes, and histones to change cellular protein localization and function. In mammals, there are seven sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging, degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte donors (OD; control group). Study 1: sirtuins genes’ expression levels and correlations with age and IVF parameters in women with no ovarian factor.
    [Show full text]
  • Sirtuin 7 Promotes Non‑Small Cell Lung Cancer Progression by Facilitating G1/S Phase and Epithelial‑Mesenchymal Transition and Activating AKT and ERK1/2 Signaling
    ONCOLOGY REPORTS 44: 959-972, 2020 Sirtuin 7 promotes non‑small cell lung cancer progression by facilitating G1/S phase and epithelial‑mesenchymal transition and activating AKT and ERK1/2 signaling YINGYING ZHAO1*, XIA YE1*, RUIFANG CHEN1, QIAN GAO1, DAGUO ZHAO2, CHUNHUA LING2, YULAN QIAN3, CHUN XU4, MIN TAO1 and YUFENG XIE1 Departments of 1Oncology, 2Respiratory Medicine, 3Pharmacy and 4Cardio-Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China Received November 26, 2019; Accepted May 29, 2020 DOI: 10.3892/or.2020.7672 Abstract. Increasing evidence has indicated the roles of (EMT) process of A549 NSCLC cells was facilitated by SIRT7 sirtuin 7 (SIRT7) in numerous human cancers. However, the overexpression, as evidenced by E-cadherin epithelial marker effects and the clinical significance of SIRT7 in human lung downregulation and mesenchymal markers (N-cadherin, cancer is largely unknown. The present research demonstrated vimentin, Snail and Slug) upregulation. In addition, SIRT7 that SIRT7 was increased in human lung cancer tumor tissues. knockdown in H292 NSCLC cells exhibited the opposite SIRT7 upregulation was associated with clinicopathological regulatory effects. Moreover, inhibition of AKT signaling characteristics of lung cancer malignancy including positive abated the promoting effects of SIRT7 in NSCLC cell prolif- lymph node metastasis, high pathologic stage and large tumor eration and EMT progression. The present data indicated that size. SIRT7 was also upregulated in human non-small cell lung SIRT7 accelerated human NSCLC cell growth and metastasis cancer (NSCLC) cell lines. Furthermore SIRT7-overexpressed possibly by promotion of G1 to S-phase transition and EMT A549 (A549-SIRT7) and SIRT7-knocked down H292 through modulation of the expression of G1-phase checkpoint (H292-shSIRT7) human NSCLC cell lines were established.
    [Show full text]
  • Cell Migration: How Neutrophils Set Their Compass
    RESEARCH HIGHLIGHTS IN BRIEF CELL MIGRATION How neutrophils set their compass Sustained directionality is an essential component of successful chemotaxis. Here, the authors show that the G protein Gαi and the mammalian homologue of the Drosophila melanogaster polarity protein Inscuteable (known as MINSC) are important for the maintenance of polarity and directionality during neutrophil chemotaxis. They observed that Gαi (which is released from Gβγ following ligand binding) accumulates at the leading edge of the cell. Gαi interacts directly with AGS3 or LGN, which themselves are bound to MINSC, recruiting it to this part of the cell. Moreover, MINSC is bound to the polarity complex PAR3–PAR6– aPKC, and this interaction targets the complex to the leading edge, thus establishing polarity. Notably, MINSC-deficient neutrophils, or neutrophils in which aPKC was blocked, showed normal motility but lacked directionality in their chemotaxis. ORIGINAL RESEARCH PAPER Kamakura, S. et al. The cell polarity protein mInsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev. Cell http://dx.doi.org/10.1016/j.devcel.2013.06.008 (2013) DNA DAMAGE Facilitating repair The repair of DNA double-strand breaks (DSBs) can be hindered by the inability of repair factors to access damage sites in the tightly packaged chromatin. This study identifies a key role for the deacetylase sirtuin 6 (SIRT6) in facilitating chromatin relaxation and promoting repair. Toiber et al. observed that SIRT6 is rapidly recruited to DSBs, with much faster kinetics than previously reported. SIRT6 was shown to target the chromatin remodelling factor SNF2H to these sites and accelerate its association with them, as well as to deacetylate histone 3 at Lys56 (H3K56), which was required for SNF2H-mediated chromatin relaxation.
    [Show full text]
  • Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your
    Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
    [Show full text]
  • Sirtuin 7 Promotes 45S Pre-Rrna Cleavage at Site 2 and Determines
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs228601. doi:10.1242/jcs.228601 RESEARCH ARTICLE Sirtuin 7 promotes 45S pre-rRNA cleavage at site 2 and determines the processing pathway Valentina Sirri1, Alice Grob2,Jérémy Berthelet1, Nathalie Jourdan3 and Pascal Roussel1,* ABSTRACT localized in the DFC whereas those implicated in later stages are In humans, ribosome biogenesis mainly occurs in nucleoli following enriched in the GC (Hernandez-Verdun et al., 2010). two alternative pre-rRNA processing pathways differing in the order in Several hundred pre-rRNA processing factors are involved in which cleavages take place but not by the sites of cleavage. To ribosome biogenesis (Tafforeau et al., 2013). Ribosomal proteins, uncover the role of the nucleolar NAD+-dependent deacetylase sirtuin non-ribosomal proteins and small nucleolar ribonucleoprotein 7 in the synthesis of ribosomal subunits, pre-rRNA processing was complexes (snoRNPs) co- and post-transcriptionally associate with analyzed after sirtinol-mediated inhibition of sirtuin 7 activity or 47S pre-rRNAs to form the 90S pre-ribosomal particle (Grandi et al., depletion of sirtuin 7 protein. We thus reveal that sirtuin 7 activity is a 2002), also named the small subunit (SSU) processome (Dragon critical regulator of processing of 45S, 32S and 30S pre-rRNAs. et al., 2002), which is rapidly processed into 40S and 60S pre- Sirtuin 7 protein is primarily essential to 45S pre-rRNA cleavage at ribosomal particles. These pre-ribosomal particles are further site 2, which is the first step of processing pathway 2. Furthermore, we matured to generate the 40S and 60S ribosomal subunits.
    [Show full text]
  • Sirtuin As the Target of Anti-Cancer Therapy
    Baran Marzena, Miziak Paulina, Bonio Katarzyna. Sirtuin as the target of anti-cancer therapy. Journal of Education, Health and Sport. 2020;10(8):240-243. eISSN 2391-8306. DOI http://dx.doi.org/10.12775/JEHS.2020.10.08.027 https://apcz.umk.pl/czasopisma/index.php/JEHS/article/view/JEHS.2020.10.08.027 https://zenodo.org/record/3987512 The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019. © The Authors 2020; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 01.08.2020. Revised: 05.08.2020. Accepted: 17.08.2020. Sirtuin as the target of anti-cancer therapy Marzena Baran1, Paulina Miziak1, Katarzyna Bonio2 1Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin 2 Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin Abstract Sirtuins is a group of nicotinamide dinucleotide (NAD +) - dependent, which have deacetylation and ADP-ribosylation activity.
    [Show full text]
  • The Role of Curcumin in the Modulation of Ageing
    International Journal of Molecular Sciences Review The Role of Curcumin in the Modulation of Ageing Anna Bielak-Zmijewska * , Wioleta Grabowska, Agata Ciolko, Agnieszka Bojko , Grazyna˙ Mosieniak, Łukasz Bijoch and Ewa Sikora * Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland; [email protected] (W.G.); [email protected] (A.C.); [email protected] (A.B.); [email protected] (G.M.); [email protected] (Ł.B.) * Correspondence: [email protected] (A.B.-Z.); [email protected] (E.S.); Tel.: +48-22-589-2250 (A.B.-Z. & E.S.) Received: 6 February 2019; Accepted: 6 March 2019; Published: 12 March 2019 Abstract: It is believed that postponing ageing is more effective and less expensive than the treatment of particular age-related diseases. Compounds which could delay symptoms of ageing, especially natural products present in a daily diet, are intensively studied. One of them is curcumin. It causes the elongation of the lifespan of model organisms, alleviates ageing symptoms and postpones the progression of age-related diseases in which cellular senescence is directly involved. It has been demonstrated that the elimination of senescent cells significantly improves the quality of life of mice. There is a continuous search for compounds, named senolytic drugs, that selectively eliminate senescent cells from organisms. In this paper, we endeavor to review the current knowledge about the anti-ageing role of curcumin and discuss its senolytic potential. Keywords: ageing; anti-cancer; autophagy; microbiota; senescence; senolytics 1. Introduction Demographic data unquestionably show that the population of elderly and very elderly people is continuously increasing.
    [Show full text]