Bhermalyn KISS Workshop Im
Total Page:16
File Type:pdf, Size:1020Kb
Impacts KISS Workshop 7/23/13 Brendan Hermalyn University of Hawaii, Honolulu, HI Deep Impact LCROSS O. R. Hainaut et al.: P/2010 A2 LINEAR 5 Aladdin N E Sun P 2010/ A2 Linear Vel N E Sun Vel N E Sun Vel N E Sun Vel Fig. 2. Continued. From top to bottom, images from UT 19.5 Jan. 2010 using GN, UT 22.3, 23.4, 25.3 Jan. 2010 using UH 2.2-m. Artificial Lunar Impacts V (km/s) Mass (kg) Angle Crater Size Ranger 7 2.62 365.6 64° 14 Ranger 8 2.65 369.7 42° 13x14 Ranger 9 2.67 369.7 - 16 Apollo 13 2.58 13925 76° 41 Apollo 14 2.54 14916 69° 39 LCROSS 2.5 2200 >85° 25 Grail 1.6 200 ~2° 5 Baldwin (1967), Moore (1968,1971), Whitaker (1971) Overview: •Why use impacts? New experimental methods and data •enabling novel missions •Why we care: - Cratering as a sensing tool Examination of Subsurface •Spectrometers? - Limited depth (~70cm) and resolving abilities (is it water or H?) •Lander? - Expensive - Difficult to land and excavate on small bodies - Excavator depth is limited - Unknown surface properties can negate methodology •Impactor? - Allows examination of subsurface and material properties (what’s down there? Grain size? Etc.,) - Excellent for initial survey - Cheap DI: $330M LCROSS: $79M <$.1M-$10sM NASA Ames Vertical Gun Range Impact Relevance • Ejecta: • Where does it go? • Where does it come from? • Volatile Release: • Heating during impact • Heating in sunlight • Ejecta return scouring and heating What can the ejecta tell you about the •subsurface? - Strength - Density - Homogeneity/Layering - Materials - Etc. How can a small impacts guide future •investigations? (ISRU, excavator design) 100 ● ● 100 10 ● ● gR ● ● √ 10 / ● e V ● gR ● √ 1 / ● e ! Anderson, et al, (2003) V 1 Cintala, et al, (1999) ! Anderson, et al, (2003) Piekutowski (1980) Cintala, et al, (1999) Piekutowski (1980) Housen, et al (1983) Housen, et al (1983) 0.1 0.1 0.1 0.2 0.5 1 0.1 0.2 0.5 1 xe/R xe/R Main-stage Scaling (vertical impacts) 100 Position: ● ● 10 100 ● ● gR ● √ ● 10 / ● e V ● gR ● √ 1 / ● e ! Anderson, et al, (2003) V 1 Cintala, et al, (1999) ! Anderson, et al, (2003) Piekutowski (1980) Cintala, et al, (1999) Housen, et al (1983) Piekutowski (1980) Housen, et al (1983) Time: 0.1 0.1 0.1 0.2 0.5 1 0.1 0.2 0.5 1 xe/R xe/R µ cδν V µ δν V Relies on Coupling I = µF ν ,pΠi = p i C = aVi δ ν m ν µ Parameter: Viδ cµ δ c ✓✓ t ◆◆ ✓ t ◆ [Housen, et al 1983] 100 Minimum Ve for LCROSS ? Sunlight Horizon ● ● 100 10 ● ● gR ● ● √ 10 / ● e V ● gR ● √ 1 / ● e ! Anderson, et al, (2003) V 1 Cintala, et al, (1999) ! Anderson, et al, (2003) Piekutowski (1980) Cintala, et al, (1999) Piekutowski (1980) Housen, et al (1983) Housen, et al (1983) 0.1 0.1 0.1 0.2 0.5 1 0.1 0.2 0.5 1 xe/R xe/R Planned Impacts Standard Impact Mission Hollow, Low-density, Solid Spheres / flyer plates Irregular Shape 5 km/s and up 2.5 km/s ? Sand or Solid Material Unconsolidated, compressible regolith Shock Heating Low Peak Pressure Almost vertical (90 degrees) 20-70 degrees to grazing Okeefe, J. D. & Ahrens, T. J. 1977 2000 Schultz 1996 LCROSS IR Camera Hypothetical Case: Cubesat Mission - 2.5km/s - 1.3kg - 10cmˆ3 - Into the moon How Much? 5 x 10 6 100 50m 50m 100m 100m 5 500m 80 500m 1000m 1000m 4 60 3 LCROSS 40 Cubesat 2 20 1 Cumulative Mass above height (kg) Cumulative Mass above height (kg) 0 0 0 200 400 600 800 1000 0 100 200 300 400 Time After Impact (sec) Time After Impact (sec) From Hermalyn and Schultz, 2012 From Where? y prime vs tau Prime 0 5 10 y/a 15 20 25 1 0 1 2 3 10 10 10 10 10 Volume Vs. Time 0 τ ! 10 1 10 3 Target c 2 Surface x 10 V/R } 3 ! 10 yy 4 } 10 5 10 4 3 2 1 10 10 10 10 From Hermalyn and Schultz, 2012 t/Tc.