Interactions of Fission Product Vapours With

Total Page:16

File Type:pdf, Size:1020Kb

Interactions of Fission Product Vapours With 233 CH9700208 INTERACTIONS OF FISSION PRODUCT VAPOURS WITH AEROSOLS C.G.Benson1 and M.S.Newland1 Abstract Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over a range of temperatures (20 - 35O°C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass- transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. Microscopic examination of the particles showed that they were homogeneous and contained non-stoichiometric quantities of cadmium and iodine. The vapour pressure of cadmium iodide is significant at the temperatures at which some of the experiments were conducted, and therefore, it was concluded that co-condensation occurred to form homogeneous particles containing mixtures of cadmium and cadmium iodide. The implications of vapour-aerosol interactions for severe reactor accidents have been examined, and recommendations for further studies have been made. The LIF technique has been shown to be particularly useful in the study of the kinetics of vapour-aerosol reactions where the fluorescence intensity of the species in the vapour phase is appropriate. It could therefore be used to study other relevant systems (e.g. reactions with surfaces). 1 Chemical Physics Department, Materials and Chemistry Group, AEA Technology pic, Winfrith, UK. 234 1. INTRODUCTION The interaction of fission products with structures and aerosols in the primary circuit during a severe accident in a light water reactor (LWR) will determine the magnitude of the source of radioactive material released to the reactor containment. This could have a significant effect on the source term to the environment, notably for accident sequences in which the containment building is by-passed. A recent state-of-the-art report on the source term [1] identified the interaction of fission product vapours with aerosols and surfaces as important areas of uncertainty in primary circuit modelling codes. Suspended aerosol particles readily serve as condensation or absorption sites for fission product vapours. The majority (> 90%) of the aerosol resulting from an accident could be associated with that generated from the predominantly non-radioactive components of the reactor core (e.g. control rods, soluble absorber, structural materials). The subsequent transport and distribution of the fission products in the environment will depend on the behaviour of the host aerosol. However, whilst the importance of this phenomenon has been established, few studies have been undertaken to characterise and quantify vapour-aerosol interactions in situ, with the majority conducted with fission product vapours and deposited material [2]. Models to describe all potential interactions are not included within the relevant codes. For example, VICTORIA [3] only restricts the extent of reaction by thermodynamic considerations or mass transfer; whilst MELCOR [4] uses kinetic models, it contains insufficient data on the rate laws and rate constants to be applied to each specific interaction. This report describes the results of the studies of experiments conducted to examine the interaction of cadmium aerosol and I2 The experiments have principally utilised laser induced fluorescence (LEF) to obtain data on the kinetics of the reaction between iodine vapour and cadmium aerosol, although post-test analysis techniques have also been used to characterise the resulting aerosols. LEF requires the species of interest (i.e. iodine) to absorb some of the incident light and subsequently relax back to its ground state, releasing energy in the form of light. The amount of light released (the fluorescence intensity) can be used to indicate the concentration of the species. Therefore, the depletion in vapour-phase iodine concentration resulting from the reaction with cadmium has been examined using the technique. 2. EXPERIMENTAL DETAILS Before the interaction experiments could be performed the iodine vapour and cadmium aerosol generation rigs were calibrated so that the vaporisation rate as a function of time was known for a given temperature. The iodine vapour and cadmium aerosol were generated in separate furnaces and introduced into the main reaction vessel. The matrix of vapour-aerosol experiments is listed in Table 1. Experiments were conducted at different temperatures, and the concentration of cadmium was varied by changing the temperature of the source, as listed in the table. 2.1 Description of the Facility The facility consisted of three sections: (i) The iodine generator (Figure 1) consisted of a specially designed TT-tube that enabled the carrier gas to by-pass the iodine source until the correct generation temperature had been reached. This 'IP-tube was contained in a temperature controlled water bath so that 235 any temperature within the range from 20 - 60°C could be achieved. For experiments above 20°C the pipework connecting the generator to the reaction vessel was heated using hot air blowers. (ii) The cadmium generator (Figure 2) consisted of a Nichrome wire wound silica tube, insulated with glass fibre blanket and Dalfratex insulating tape. An alumina crucible containing the cadmium was located inside the furnace and the temperature measured using a 'K'-type thermocouple. The furnace was connected to the furnace by a tube (length 150 mm> ID 15 mm) which was heated to 320°C using a heating tape connected to a variable resistance. The temperature of this pipework was also measured using a 'K'- type thermocouple. (iii) The main reaction vessel (Figure 3) consisted of a Pyrex glass tube (length 580 mm, OD 28 (±0.5) mm^ wall thickness 2 (±0.2) mm). The iodine generator was connected to the inlet and introduced into the aerosol gas flow through an inner glass tube (length 180 mm, OD 12 mm), which was blanked off at the end with four holes (diameter 3 mm) placed 6 mm from the end. The cadmium generator was connected at the same end at an angle of 45° to the tube. 100 mm capillaries (0.5 mm ID) were positioned at ~ 50 mm intervals along the length of the vessel, starting at 105 mm from the inlet. These capillaries contained 'K'-type thermocouples used to control the temperature of the reaction vessel (see Section 2.4). All thermocouple measurements throughout the system were recorded using a Schhimberger 'Orion' datalogger. The outlet of the reaction vessel was connected to a dilution chamber (length 100 mm, OD 65 mm). This had connections for dilution flow (if used), an optical window for the laser, an aerosol sampling port connected to a Nuclepore filter holder and pump, and a gas outlet. The gas outlet was connected to a 250 cm3 bubbler containing 100 cm3 carbon tetrachloride and 50 cm3 sulphuric acid (pH = 5.6). The bubbler was then connected to an absolute filter before venting to the local extract system. 2.2 Furnace Calibration 2.2.1 Iodine Helium was used as the carrier gas at a flow rate of ~1 1 min1. The water bath was set to the required temperature (20-50°C) and allowed to equilibrate. The 0°C point was obtained using an ice/water bath. Experiments performed above room temperature involved heating the tube between the generator and the bubbler to ensure that there was no condensation. When the required thermal-hydraulic conditions had been attained, the carrier gas flow was switched so that it passed through the iodine source. The vapour was collected in a 0.1M sodium hydroxide (NaOH) trap. After a set time period, the carrier gas was diverted through the by-pass system, and the apparatus switched off and allowed to cool. The mass of iodine vaporised from the generator was calculated by weighing the TT-tube before and after each experiment. The concentration of iodine in the bubbler was determined using inductively coupled plasma optical emission spectroscopy (ICPOES). The calibration graph is shown in Figure 4. 2.2.2 Cadmium Generator The carrier gas was helium (see Section 2.2.1 above) controlled by a similar flow controller to the iodine generator set to a flowrate of 10 1 min1. A pre-weighed alumina crucible containing 236 the cadmium (~ 5 g) was placed in the centre of the furnace. A 'K'-type thermocouple was positioned inside the furnace to monitor the temperature of the crucible. The delivery tube between the furnace and the bubbler was wrapped in heating tape and maintained at a temperature slightly higher than the melting point of cadmium (~321°C, monitored using a 'K'- type thermocouple) so that the aerosol generated reached the bubbler, or the reaction vessel (in a vapour-aerosol experiment), without condensing.
Recommended publications
  • Important Structures of AB2 Compounds
    Important Structures of AB2 compounds AB2 compounds have many different structures but many of them belong to one of the following 5 types. Fluorite (CaF2) The fluorite structure is very unique in so far as the close-packed ions are the cations and not the anions. In normal cases, the anion is the larger ion but in the case of CaF2, Ca is larger than F hence the structure is based on a cubic close-packing of the Ca2+ ions. There are 8 tetrahedral - holes in the unit cell of CaF2 and they are all occupied by F ions. One can notice that the only difference between fluorite and sphalerite (ZnS) is that in sphalerite only 4 of the tetrahedral holes are filled. Every fluorine anion is surrounded tetrahedrally by 4 calcium cations and every calcium cation is surrounded cubically by 8 flourine ions. In other words in the fluorite structure a (8,4)-coordination is observed. Antifluorite The antifluorite structure gets its name from the fluorite structure because it’s just the opposite i.e. the cations occupy the tetrahedral holes as compared to the anions in the fluorite structure. In this structure a cubic close-packing of the anions is observed. For example in K2O the cubic close-packing is made by oxide and the potassium occupy all 8 tetrahedral holes. The oxygen anions are surrounded by 8 potassium cations in a cubic way and the potassium cations are surrounded tetrahedrally by 4 oxygen ((4,8)-coordination). Cadmium Chloride (CdCl2) - In CdCl2 we have a cubic close-packed array of Cl ions.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Properties of Cds Chemically Deposited Thin Films on the Effect of Ammonia Concentration
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 4, Issue 4 (Sep. - Oct. 2013), PP 01-07 www.iosrjournals.org Properties of CdS Chemically Deposited thin films on the Effect of Ammonia Concentration Munikrishna Reddy Y and Nagendra Vara Prasad M Department of Physics, S S B N Degree & PG College, Anantapuram – 515001, A.P Abstract : The effect of ammonia concentration on electrical properties, optical properties and structural properties of chemical bath deposited (CBD) Cadmium sulphide (CdS) thin films has been revealed. The films were prepared by using cadmium acetate as cadmium ion (Cd2+) source, thiourea as sulphur ion (S2-) source and ammonia as the complexing agent. Ammonia concentration was changed from 0.1 M – 3.0 M. Ammonia concentration at 2.0 M uniform, dense and continuously coated films were obtained. Not only typical cadmium- pure but also unusual sulphur deficiency phenomena were observed for CBD CdS thin films. In the present investigation, the carrier concentration varied form 1.831X106cm-3 to 1.026X106cm-3 when ammonia concentration is changed from 0.5M to 2.5 M. The direct band gap energy at 0.5M is 1.92eV while at 2.5M is 2.65eV. The surface morphology of as deposited thin films is almost smooth and no grains were observed clearly at low molar concentration and predominant grains at the concentration of ammonia is 2.0M. By estimated Cd:S ratio value is found to be 1.04 by using EDAX. The thin film deposited at 2.0M concentration shows the highest degree crystallinity.
    [Show full text]
  • Formation of Single Phased Mixed Crystals from Aqueous Solutions - an Overview
    An archive of organic and inorganic chemical sciences DOI: 10.32474/AOICS.2020.04.000187 ISSN: 2637-4609 Review Article Formation of Single Phased Mixed Crystals from Aqueous Solutions - an Overview CK Mahadevan* Department of Physics, Bharathidasan University, India *Corresponding author: CK Mahadevan, Department of Physics, Bharathidasan University, India, E-mail: Received: February 03, 2020 Published: February 13, 2020 Abstract Single phased mixed crystals are normally formed from two or more isomorphous end member crystals with some conditions. However, in some circumstances, it is possible that such mixed crystals can be formed/prepared/grown from aqueous solutions even when the end member crystals are not isomorphous with each other. An overview of various studies made in this direction is presented in this article focusing the results reported by the present author’s research group. Keywords: Aqueous solutions; Crystal growth from solution; Mixed crystals; Quasi mixed crystals; Solid solutions Introduction Single crystals are solids with regular (three dimensionally available where various crystals ranging in size from small to large periodic) arrangement of the constituent atoms, ions or molecules technology. Also, it is known that there are several factories crystals are grown. However, further research in the preparation and characterization of crystalline materials and growth of large preparation/growth of single crystals means careful arrangement into some fixed and rigid pattern known as a lattice. So, formation/ size crystals is very much necessary for our social requirements. of atoms, ions or molecules in a particular three-dimensional order. The most important question now is: How to tune or stimulate the There are four major categories of crystal growth methods, viz.
    [Show full text]
  • Attachment 3-1 Guidance for Developing Ecological Soil
    Attachment 3-1 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs) Eco-SSL Standard Operating Procedure (SOP # 1): Plant and Soil Invertebrate Literature Search and Acquisition OSWER Directive 92857-55 November 2003 This page intentionally left blank OVERVIEW Currently, there is a lack of clear guidance in setting terrestrial effect thresholds when conducting risk assessments. Without an EPA-approved, peer-reviewed, ecologically-based terrestrial effect database, the process to develop thresholds is problematic both to EPA, other federal agencies, states, and concerned private parties. Identification of published toxicity studies on invertebrates, microbial processes and plants is a key step in the derivation of benchmarks. The purpose of the Task Group 4, Standard Operating Procedure Number 1: Literature Search and Acquisition (referred to as TG4-SOP#1) is to document procedures used to identify and acquire potentially relevant toxicology literature for use in setting ecological soil screening levels. The literature search strategy is designed to locate worldwide terrestrial toxicity literature that includes the effects of chemicals of concern on terrestrial soil-dwelling invertebrates and plants. The literature acquisition process is designed to ensure timely acquisition of relevant publications. LITERATURE IDENTIFICATION Potentially relevant literature for developing ecological soil screening levels (Eco-SSLs) is identified by examining hard copies of relevant journals, bibliographies and guidance publications and through the use of a comprehensive computerized literature search strategy. These procedures are designed to locate worldwide terrestrial toxicology literature that includes the effects of specific toxic substances with an emphasis on exposure via soil. Paper-based Literature Identification The paper-based literature identification process includes the scanning of relevant review article bibliographies and key journals held in the U.S.
    [Show full text]
  • Of a Rhombohedral (Pseudocubic) Unit of Structure with a = 5.08 a and a = 90
    VOL. 15, 1929 CHEMISTRY: L. PA ULING 709 TABLE 2 TUMPER- LOG K02 LOG KO0 LOG KON ATURS L AND R, B AND R, B AND R, ABS. p. 485 p. 96 LOG KOHB p. 96 LOG KOHV LOG KiB LOG KV LOG K4B LOG K4V 1000 -19.8 -20.1 -21.8 -21.1 -15.5 +1.95 -4.35 +2.74 -3.55 1300 -13.9 -14.01 -15.2 -14.3 -10.34 +1.31 -3.53 +0.30 -4.54 1500 -11.2 -11.42 -12.24 -11.4 - 8.05 +1.03 -3.16 -0.79 -4.98 1705 - 9.13 - 9.28 - 9.95 - 9.0 - 6.26 +0.81 -2.87 -1.66 -5.35 1900 - 7.55 - 7.6 - 8.21 - 7.2 - 4.90 +0.65 -2.66 -2.29 -5.60 interp. 2155 - 5.94 - 6.08 - 6.42 - 5.5 - 3.50 +0.48 -2.43 -2.99 -5.91 2505 - 4.27 - 4.31 - 4.59 - 3.5 - 2.08 +0.32 -2.19 -3.67 -6.18 20H > H2 + 02 + 14,000 cal. (B) 20H - 11 + 02 - 15,000 cal. (V) 1 Villars, J. Am. Chem. Soc., 51, 2374-7 (1929). 2 Dr. Langmuir has kindly pointed out that the knowledge of such equilibrium constants will be extremely useful in investigating the possibility of the direct formation of hydroxyl during the combustion of hydrogen and oxygen at high temperatures, an investigation which he is at present carrying on. Z. physik. Chem., 139A, 75-97 (1928). 4 Z.
    [Show full text]
  • 20210311 IAEG AD-DSL V5.0 for Pdf.Xlsx
    IAEGTM AD-DSL Release Version 4.1 12-30-2020 Authority: IAEG Identity: AD-DSL Version number: 4.1 Issue Date: 2020-12-30 Key Yellow shading indicates AD-DSL family group entries, which can be expanded to display a non-exhaustive list of secondary CAS numbers belonging to the family group Substance Identification Change Log IAEG Regulatory Date First Parent Group IAEG ID CAS EC Name Synonyms Revision Date ECHA ID Entry Type Criteria Added IAEG ID IAEG000001 1327-53-3 215-481-4 Diarsenic trioxide Arsenic trioxide R1;R2;D1 2015-03-17 2015-03-17 100.014.075 Substance Direct Entry IAEG000002 1303-28-2 215-116-9 Diarsenic pentaoxide Arsenic pentoxide; Arsenic oxide R1;R2;D1 2015-03-17 2015-03-17 100.013.743 Substance Direct Entry IAEG000003 15606-95-8 427-700-2 Triethyl arsenate R1;R2;D1 2015-03-17 2017-08-14 100.102.611 Substance Direct Entry IAEG000004 7778-39-4 231-901-9 Arsenic acid R1;R2;D1 2015-03-17 2015-03-17 100.029.001 Substance Direct Entry IAEG000005 3687-31-8 222-979-5 Trilead diarsenate R1;R2;D1 2015-03-17 2017-08-14 100.020.890 Substance Direct Entry IAEG000006 7778-44-1 231-904-5 Calcium arsenate R1;R2;D1 2015-03-17 2017-08-14 100.029.003 Substance Direct Entry IAEG000009 12006-15-4 234-484-1 Cadmium arsenide Tricadmium diarsenide R1;R2;D1 2017-08-14 2017-08-14 Substance Direct Entry IAEG000021 7440-41-7 231-150-7 Beryllium (Be) R2 2015-03-17 2019-01-24 Substance Direct Entry IAEG000022 1306-19-0 215-146-2 Cadmium oxide R1;R2;D1 2015-03-17 2017-08-14 100.013.770 Substance Direct Entry IAEG000023 10108-64-2 233-296-7 Cadmium
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Cadmium Halide Complexes and Anion Exchange Equilibria. Edward Lyndol Harris Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1961 Cadmium Halide Complexes and Anion Exchange Equilibria. Edward Lyndol Harris Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Harris, Edward Lyndol, "Cadmium Halide Complexes and Anion Exchange Equilibria." (1961). LSU Historical Dissertations and Theses. 669. https://digitalcommons.lsu.edu/gradschool_disstheses/669 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 61-5141 microfilmed exactly as received HARRIS, Edward Lyndol, 1933- CADMIUM HALIDE COMPLEXES AND ANION EXCHANGE EQUILIBRIA. Louisiana State University, Ph.D., 1961 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan CADMIUM HALIDE COMPLEXES AND ANION EXCHANGE EQUILIBRIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Edward Lyndol Harris B .A ., Me Murry College* 1956 M.S., Louisiana State University, 1958 June, 1961 ACKNOWLEDGMENT The author wiehea to gratefully acknowledge the advice and aeaietance given to him on numeroua occaeione by Profeaeor Maurice M. Vick, who directed thie work. ii TABLE OF CONTENTS Page INTRODUCTION . ............................................................................... 1 EXPERIMENTAL PROCEDURES ............................................................. 8 Reagents and Analytical M eth o d.............................. s 8 Equilibrium Determinations ........... 9 Resin Volume D eterm inations...................................
    [Show full text]
  • The Nuclear Hexadecapole Interaction of Iodine-127 in Cadmium Iodide Measured Using Zero-Field Two Dimensional Nuclear Magnetic Resonance
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Gerard Harbison Publications Published Research - Department of Chemistry February 1994 The nuclear hexadecapole interaction of iodine-127 in cadmium iodide measured using zero-field two dimensional nuclear magnetic resonance Ming-Yuan Liao University of Nebraska - Lincoln Gerard S. Harbison University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistryharbison Part of the Chemistry Commons Liao, Ming-Yuan and Harbison, Gerard S., "The nuclear hexadecapole interaction of iodine-127 in cadmium iodide measured using zero-field two dimensional nuclear magnetic esonancer " (1994). Gerard Harbison Publications. 3. https://digitalcommons.unl.edu/chemistryharbison/3 This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gerard Harbison Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The nuclear hexadecapole interaction of iodine-127 in cadmium iodide measured using zero-field two dimensional nuclear magnetic resonance Ming-Yuan Liao and Gerard S. Harbison Department of Chemistry, University of Nebraska at Lincoln, Lincoln, Nebraska 68588-0304 (Received 25 June 1993; accepted.18October 1993) Two dimensional nuclear quadrupole correlation spectroscopy has been used to measure simultaneously the two nuclear spin transition frequenciesfor the iodine resonanceof cadmium iodide at zero magnetic field. Becauseof the layer structure and resultant polymorphism in this substance, conventional zero-field NMR spectra are inhomogeneously broadened by several hundred kHz. However, the 2D spectra obtained by our method are subject only to homogeneous linewidth, which for this compound is of the order of 5 kHz.
    [Show full text]
  • Cadmium and Cadmium Compounds
    Locating and Estimating Air Emissions From Sources of Cadmium and Cadmium Compounds U. S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Locating and Estimating Air Emissions From Sources of Cadmium and Cadmium Compounds Prepared for: Anne Pope Office of Air Quality Planning and Standards Technical Support Division U. S. Environmental Protection Agency Research Triangle Park, N.C. 27711 Prepared by: Midwest Research Institute 401 Harrison Oaks Boulevard, Suite 350 Cary, North Carolina 27513 TABLE OF CONTENTS Section Page 1 PURPOSE OF DOCUMENT ..................1-1 REFERENCES ....................1-4 2 OVERVIEW OF DOCUMENT CONTENTS .............2-1 3 BACKGROUND.......................3-1 NATURE OF POLLUTANT ................3-1 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ....3-4 Production..................3-4 Use.....................3-6 Emissions ..................3-6 REFERENCES ................... 3-13 4 EMISSIONS FROM CADMIUM PRODUCTION ...........4-1 CADMIUM REFINING AND CADMIUM OXIDE PRODUCTION ...4-1 Process Description .............4-3 Emissions and Controls ............4-6 CADMIUM PIGMENTS PRODUCTION ........... 4-11 Process Description ............ 4-14 Emissions and Controls ........... 4-19 CADMIUM STABILIZERS PRODUCTION ......... 4-20 Process Description ............ 4-22 Emission and Controls ........... 4-24 OTHER CADMIUM COMPOUND PRODUCTION ........ 4-25 Process Descriptions ............ 4-25 Emissions and Controls ........... 4-29 REFERENCES ................... 4-32 5
    [Show full text]
  • Committee for Risk Assessment (RAC) Committee for Socio-Economic Analysis (SEAC)
    Committee for Risk Assessment (RAC) Committee for Socio-economic Analysis (SEAC) Background document to the Opinion on the Annex XV dossier proposing restriction on CADMIUM AND ITS COMPOUNDS IN ARTISTS’ PAINTS ECHA/RAC/RES-O-0000004990-69-02/F ECHA/SEAC/RES-O-0000004990-69-03/F IUPAC NAME: CADMIUM EC NUMBER: 231-152-8 (cadmium) CAS NUMBER: 7440-43-9 (cadmium) 9 March 2015 Background document to RAC and SEAC opinions on CADMIUM AND ITS COMPOUNDS IN ARTISTS’ PAINTS Table of contents PROPOSAL FOR A RESTRICTION .................................................................. 1 About this report .................................................................................................. 1 A. Proposal .................................................................................................. 3 A.1 Proposed restriction(s) .................................................................................... 3 A.1.1 The identity of the substance(s) ............................................................ 3 A.1.2 Scope and conditions of restriction ......................................................... 3 A.2 Targeting....................................................................................................... 5 A.3 Summary of the justification ............................................................................ 6 A.3.1 Identified hazard and risk ..................................................................... 6 A.3.2 Justification that action is required on a Union-wide basis ........................
    [Show full text]