Soil Investigation Report

Total Page:16

File Type:pdf, Size:1020Kb

Soil Investigation Report 1 URBAN REDEVELOPMENT AUTHORITY TERM CONTRACT FOR SOIL INVESTIGATION (URA/T/13/010) Soil Investigation Works At Fernvale Road (Parcel B) CONTENTS VOLUME I Page No. 1.0 INTRODUCTION 005 1.1 General 005 2.0 FIELD WORKS 006 2.1 General 006 2.2 Description of Field Investigation 006 2.2.1 Drilling 006 2.2.2 Undisturbed Sampling 006 2.2.3 Standard Penetration Testing 006 3.0 LABORATORY TESTING 007 3.1 General 007 3.2 Code of Practice 007 3.3 Physical Properties 007 3.3.1 Moisture Content 007 3.3.2 Bulk and Dry Density 007 3.3.3 Particle Density 007 3.3.4 Atterberg Limit 007 3.3.5 Grain Size Analysis 007 3.4 Mechanical Properties 008 3.4.1 Unconsolidated Undrained (UU) Triaxial Test 008 4.0 SOIL CLASSIFICATION 008 5.0 LIST OF GEOLOGICAL CROSS-SECTIONS 009 6.0 DESCRIPTION OF SOIL STRATA 009 REFERENCES 011 LIST OF TABLES Table 1.1 Quantity of Field Works and Laboratory Tests 012 Table 2.1 Classification / Symbol of Soil and Rock Type 013 Report No: ECGP 2531 URA ECON GEOTECH PTE LTD 3 URBAN REDEVELOPMENT AUTHORITY TERM CONTRACT FOR SOIL INVESTIGATION (URA/T/13/010) Soil Investigation Works At Fernvale Road (Parcel B) Table 2.2 Geological Stratigraphy of Singapore 014 Table 2.3 Identification and Description of Soils 015 Table 2.4 Weathering Classification of Soils / Rocks 017 Table 2.5 Plasticity Chart 018 Table 2.6.1 Classification of Clays/Silts from Shear Strength 019 Table 2.6.2 Classification of Clays/Silts from SPT results 019 Table 2.6.3 Classification of Sands from SPT Results 019 LIST OF FIGURES Fig. 2.1 Illustration of Boring Work 020 Fig. 2.2 Illustration of Standard Penetration Test 021 APPENDICES APPENDIX A · Location Plan 023 · Borehole Location Plan 024 · As-built Borehole Locations 025 · Cross-Sections 026 · Legends for different soil and rock types 027 · Borehole Logs 028-041 APPENDIX B · Laboratory Test Results of Physical, Mechanical & Chemical Properties of Soil & Water Samples 043-092 · Certificate of Accreditations 093 aõb Report No: ECGP 2531 URA ECON GEOTECH PTE LTD 4 1.0 INTRODUCTION 1.1 General On behalf of Urban Redevelopment Authority, Econ Geotech Pte Ltd has performed the Term Contract for Soil Investigation (URA/T/13/010). This report presents the factual results of Soil Investigation Works At Fernvale Road (Parcel B). The field investigation for this project was carried out between 10th February 2014 and 01st March 2014. The works described here in this report have been carried out as per the specifications and under the technical direction of the client. This report covers 5 boreholes. The particulars of this project are as follows: (a) Name of Project Soil Investigation Works At Fernvale Road (Parcel B) (b) Location Fernvale Road (c) Client Urban Redevelopment Authority (d) Main Contractor ECON Geotech Pte. Ltd. (e) Director Steven Ih Yeo (f) Project Manager Aung Moe (g) Period of Work Field Works v 10th February 2014 – 01st March 2014 Laboratory Works and Report v 17th February 2013 – 14th March 2014 (h) Scope of Work Field Works Ø Boreholes 5 Locations Moisture Content, Bulk & Dry Density, Laboratory Tests Particle Density, Grain Size Analysis, Atterberg Limit Tests, Triaxial (UU) Tests of Soil Samples. (Refer Table 1.1 & 1.2 for Quantities of Field and Laboratory Works) 5 2.0 FIELD WORKS 2.1 General The field works were generally carried out in accordance with BS 5930: 1999 “Code of Practice for Site Investigation” and as directed by the client. The Borehole Location Plan for proposed site investigation works is shown in Appendix-A. The co-ordinates and reduced levels of the boreholes are also presented in respective borelogs in Appendix-A. 2.2 Description of Field Investigation 2.2.1 Drilling This investigation was performed using rotary drilling rig. A cutting tool was attached to the drilling rod to drill through the soils, which produces 100mm diameter borehole. Circulated mud water was pumped through the hollow rods into the hole to stabilize the borehole and to wash out the soil debris (resulted due to drilling) to the ground surface by pressure. Partial casing was used to stabilize the borehole side apart from using mud circulation. Trial pits of size 1.0 x 1.0 x 3.0 m depth was generally excavated at every borehole location. The boreholes were terminated at the depths as suggested by the client. Illustration of Boring works are shown in (Fig.2.1) During the investigation, a site log was kept by the Geotechnical site supervisor to record soil descriptions, stratum changes, SPT and coring field records. 2.2.2 Undisturbed Sampling Undisturbed samples were generally collected at the depth of 3 m intervals in Kallang Formation, unless otherwise specified by the client. Before a sample was taken, the bottom of the borehole was cleaned. Each sample was then collected using a 75 mm diameter by 1000 mm long 'Shelby' type thin wall sample tube driven by hydraulic push. Samples of very stiff to hard soil were collected by using Mazier sampler. Thin wall piston samplers were used for very soft to soft soil. After a sample was retrieved from borehole, it was immediately labeled and sealed with wax at both ends before sending to laboratory. 2.2.3 Standard Penetration Testing Standard Penetration Tests (SPT) is generally performed at 3m interval in all soil layers, as it is shown in (Fig.2.2). Once the borehole reached the required test depth, the borehole was cleaned by flushing with water/mud before starting the test. The test was performed by using a split barrel type sampler with a 50.8 mm external and 34.9 mm internal diameter. The test was conducted in six stages, where each stage consisted of driving the sampler 75 mm into the soil by the use of a free fall 63.5 kg hammer (or monkey). The hammer was dropped from a height of 760 mm on to an anvil connected to the sampler by rods. The number of blows required for each 75mm penetration was noted and the final N-value is reported as the total number of blows required to achieve the last 300 mm of penetration, the initial 150 mm of penetration being to seat the sampler and by-pass any disturbance. If, however, 100 blows were reached before a penetration of 300 mm was achieved, the test was stopped and the penetration achieved recorded. 6 3.0 LABORATORY TESTING 3.1 General The various laboratory tests were performed on undisturbed samples based on the testing schedule approved by the consultant. The tests related to mechanical properties were performed in Econ Geotech Laboratory. The quantities of laboratory tests are summarized in Table 1.2 3.2 Code of Practice The laboratory tests were performed in accordance with the British Standard Code of Practice BS 1377 (1990) and as per terms of accreditation under the Singapore Accreditation Council – Singapore Laboratory Accreditation Scheme. The summaries and detailed test results are presented in Appendix-B. The results are also presented in respective borehole logs in Appendix-A.A 3.3 Physical Properties 3.3.1 Moisture Content To measure moisture content, a weighed specimen is taken from an undisturbed sample and placed in a tin, where it is oven dried at 105-110◦C for 18-24 hours. The soil is weighted after the drying and the weight of water is calculated simply by subtracting the two values. The moisture content is then defined as the percentage of the weight of water over weight of dry soil. 3.3.2 Bulk and Dry Density The bulk density is the measured weight of a solid cylindrical soil specimen taken from an undisturbed sample divided by its volume. The dry density was calculated from bulk density and moisture content. 3.3.3 Particle Density The particle density of a specimen is determined in accordance to BS 1377 using an oven dried representative portion of the undisturbed sample. The particle density is defined as the ratio of the weight of soil to the water needed to displace the soil particles. 3.3.4 Atterberg Limit The liquid limit of a specimen is derived using the cone penetrometer method as to BS 1377. The plastic limit is defined as the moisture content of a specimen at the point where it can be satisfactorily rolled into a 3mm diameter thread with just starting to crumble. The soils’ plasticity index is then derived by subtracting the plastic limit from the liquid limit. 3.3.5 Grain Size Analysis The grain size analysis has been carried out utilizing both sieve and hydrometer analysis. The sieve analysis was carried out by wet sieving method in which the material was first washed through a 2 mm test sieve nested in a 63 mm test sieve. The soils retained in the sieves were then dried in an oven. The dried soils were then sieved by dry sieving by passing the soils through a series of 7 square mesh sieves, which become progressively finer down to 63 mm mesh. Each fraction thus collected was then weighed and the percentage retained on each sieve was calculated by dividing individual weights by the total sample weight. The soils passing through 63 mm mesh was analyzed by sedimentation using hydrometer method. The hydrometer method involves measuring the rate of settlement of fine particles suspended in a solution. Utilizing the principle of Stokes’ law, particle size can be directly related to its rate of settlement in a fluid such as water.
Recommended publications
  • 2017 Classification of Soils and Rocks for The
    PIANC WG Report n° 144 - 2017 ABRIDGED FIELD VERSION CLASSIFICATION OF SOILS AND ROCKS FOR THE MARITIME DREDGING PROCESS The World Association for Waterborne Transport Infrastructure PIANC The World Association for Waterborne Transport Infrastructure PIANC REPORT N° 144 MARITIME NAVIGATION COMMISSION CLASSIFICATION OF SOILS AND ROCKS FOR THE MARITIME DREDGING PROCESS - ABRIDGED FIELD VERSION - 2017 PIANC has Technical Commissions concerned with inland waterways and ports (InCom), coastal and ocean waterways (including ports and harbours) (MarCom), environmental aspects (EnviCom) and sport and pleasure navigation (RecCom). This report has been produced by an international Working Group convened by the Maritime Navigation Commission (MarCom). Members of the Working Group represent several countries and are acknowledged experts in their profession. The objective of this report is to provide information and recommendations on good practice. Conformity is not obligatory and engineering judgement should be used in its application, especially in special circumstances. This report should be seen as an expert guidance and state-of-the-art on this particular subject. PIANC disclaims all responsibil- PIANC REPORT N° 144 ity in the event that this report should be presented as an official standard. MARITIME NAVIGATION COMMISSION PIANC Secrétariat Général Boulevard du Roi Albert II 20, B 3 B-1000 Bruxelles Belgique http://www.pianc.org VAT BE 408-287-945 ISBN 978-2-87223-247-5 © All rights reserved TABLE OF CONTENTS Part 1: Introduction and Outline
    [Show full text]
  • Extract from Site Investigation a Handbook for Engineers; P Reading and M Martin
    Extract from Site investigation a Handbook for Engineers; P Reading and M Martin. To be published 2021 by Thomas Telford Publishing The standard penetration test as we know it today was first described by Karl Terzaghi and Ralph Peck (1947). At that time the equipment had been in use for more than 30 years as a sampling tool, albeit rather crude. The sample is invariably highly disturbed and is of limited value. The original equipment was modelled around similar equipment used in the USA and attributed to Colonel Charles R Gow in 1902. The original sampler was driven at the bottom of the borehole using a 110lb hammer. Around 1927 part of the Raymond piling group, the Gow Company began using a split spoon sampler of 2 inches diameter. Around the same time a similar system was being used by Sprague and Henwood. In both systems the weight was winched by hand. The split spoon sampling tool, which comprised a thick walled tube with a cutting shoe on one end, was driven into the bottom of a borehole with blows from a 110lb hammer. Powered winches were not reported until 1937. The equipment was not standardised and it is recorded that the drop weight ranged from 110lb to 140lb. The height the weight was dropped was related to that which a man could comfortably lift on the winch, usually 30 inches. It was not until Terzaghi and Peck (1947) when describing the sampling system suggested that the number of blows required to drive the sampler over 1 foot. Seating the sampler into the base of the borehole was required prior to carrying out the test.
    [Show full text]
  • Engineering Standard for Soil Engineering Original
    IPS-E-CE-110 ENGINEERING STANDARD FOR SOIL ENGINEERING ORIGINAL EDITION DEC. 1994 This standard specification is reviewed and updated by the relevant technical committee on May 1998(1), July 2004(2) and Jan. 2015(3). The approved modifications are included in the present issue of IPS. This Standard is the property of Iranian Ministry of Petroleum. All rights are reserved to the owner. Neither whole nor any part of this document may be disclosed to any third party, reproduced, stored in any retrieval system or transmitted in any form or by any means without the prior written consent of the Iranian Ministry of Petroleum. Dec. 1994 IPS-E-CE-110 FOREWORD The Iranian Petroleum Standards (IPS) reflect the views of the Iranian Ministry of Petroleum and are intended for use in the oil and gas production facilities, oil refineries, chemical and petrochemical plants, gas handling and processing installations and other such facilities. IPS is based on internationally acceptable standards and includes selections from the items stipulated in the referenced standards. They are also supplemented by additional requirements and/or modifications based on the experience acquired by the Iranian Petroleum Industry and the local market availability. The options which are not specified in the text of the standards are itemized in data sheet/s, so that, the user can select his appropriate preferences therein The IPS standards are therefore expected to be sufficiently flexible so that the users can adapt these standards to their requirements. However, they may not cover every requirement of each project. For such cases, an addendum to IPS Standard shall be prepared by the user which elaborates the particular requirements of the user.
    [Show full text]
  • Review of British Standard References in Technical Guidance Documents for Migration to Eurocodes and UK National Annexes
    Review of British Standard References in Technical Guidance Documents for Migration to Eurocodes and UK National Annexes GEO Report No. 299 Halcrow China Limited Geotechnical Engineering Office Civil Engineering and Development Department The Government of the Hong Kong Special Administrative Region Review of British Standard References in Technical Guidance Documents for Migration to Eurocodes and UK National Annexes GEO Report No. 299 Halcrow China Limited This report was originally produced by Halcrow China Limited in February 2014 under Consultancy Agreement No. CE 26/2012 (GE) for the sole and specific use of the Government of the Hong Kong Special Administrative Region 2 © The Government of the Hong Kong Special Administrative Region First published, July 2014 Prepared by: Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong. 3 Preface In keeping with our policy of releasing information which may be of general interest to the geotechnical profession and the public, we make available selected internal reports in a series of publications termed the GEO Report series. The GEO Reports can be downloaded from the website of the Civil Engineering and Development Department (http://www.cedd.gov.hk) on the Internet. Printed copies are also available for some GEO Reports. For printed copies, a charge is made to cover the cost of printing. The Geotechnical Engineering Office also produces documents specifically for publication in print. These include guidance documents and results of comprehensive reviews. They can also be downloaded from the above website. These publications and the printed GEO Reports may be obtained from the Government’s Information Services Department.
    [Show full text]
  • Subject Index
    STP883-EB/Nov. 1985 Subject Index A C Aas in-situ tests, 209-210 Calcarenites, 415,416, 418 Analytical model technique, 432, 438 Calcareous ooze testing, 114, 116, Andersen's procedure, 342, 345,349- 118-121 351 Calcareous sediments cementation and Arabian Gulf soils, 413 grain crushing, 241-242, 243 ASCE conference, 41 Calcilutites, 415 ASTM Standards Calcisiltites, 415,419 D 422:385 Carbonate rocks, 413 D 653:12 Cementation, calcareous sediments, D 1586:517 241-242 D 2435:457 Cemented beach sands, 306, 308, 311 D 3441:34 Cementing agents, 306 D 4186:457 Cesium- 137, 157, 158 field vane shear test, 35,206 Clays Attraction, in-situ, 44, 47-49 Beaufort Sea, 487 classification, 65-66 cyclic degradation, 336 B deformation, 341,351,505-506 Beaufort Sea clays, 487 failure, 267-268,270, 271 Bering Sea sediment liquefaction, 454 Gault, 30, 31 Borehole shear testing, 140 Gulf of Mexico, 363 Borehole swell, 150 illitic "red," 84, 88 Bridge site investigation, 515 Kringalik, 488, 505-508 stratigraphy, 522-523 testing, 492-499 British Standards undrained strength, 508-510 BS 1377-1975:35 yield behavior, 499-505 BS 5930-1981:35 Nelson Farm, 295 Building Research Establishment, 21 overconsolidated, 259 Bulk density, marine sediment, 154, peak shear stress ratios, 271-272 163 pelagic, 114, 115, 117, 251 551 Copyright~ 1985 by ASTM International www.astm.org 552 STRENGTH TESTING ON AAARINE SEDIMENTS plastic Drammen, 338, 350 Consolidation stress, 262-266, 270 quick, 50, 52, 53 Consohdation testing, 201, 256, 323 rod shear testing, 258 Consohdation theory,
    [Show full text]
  • Copyrighted Material
    P1: TIX/XYZ P2: ABC c01 JWST024-Reynolds February 9, 2011 9:7 Printer Name: Yet to Come 1 Introduction As the range of applications of geophysical methods has increased, 1.1 What are ‘applied’ and particularly with respect to derelict and contaminated land inves- ‘environmental’ geophysics? tigations, the subdiscipline of ‘environmental geophysics’ has devel- oped (Greenhouse, 1991; Steeples, 1991). This can be defined as being: In the broadest sense, the science of geophysics is the application of physics to investigations of the Earth, Moon and planets. The subject The application of geophysical methods to the investigation of near- is thus related to astronomy. Normally, however, the definition of surface bio-physico-chemical phenomena that are likely to have (signif- ‘geophysics’ is used in a more restricted way, being applied solely to icant) implications for the management of the local environment. theEarth.Eventhen,thetermincludessuchsubjectsasmeteorology and ionospheric physics, and other aspects of atmospheric sciences. The principal distinction between engineering and environmen- To avoid confusion, the use of physics to study the interior of the tal geophysics is more commonly that the former is concerned with Earth, from land surface to the inner core, is known as solid earth structures and types of materials, whereas the latter can also in- geophysics. This can be subdivided further into global geophysics, clude, for example, mapping variations in pore-fluid conductivities or alternatively pure geophysics, which is the study of the whole to indicate pollution plumes within groundwater. Chemical effects or substantial parts of the planet, and applied geophysics, which is can be equally as important as physical phenomena.
    [Show full text]
  • Technical Laboratories) Industrial Area, Street # 11, Gate # 103 Doha, State of Qatar
    This is to attest that TECH LAB (TECHNICAL LABORATORIES) INDUSTRIAL AREA, STREET # 11, GATE # 103 DOHA, STATE OF QATAR Testing Laboratory TL-387 has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation. Effective Date March 15, 2021 President TECH LAB (TECHNICAL LABORATORIES) www.techlabqatar.com Contact Name R G. Hegde Contact Phone + 974 44603251 Accredited to ISO/IEC 17025:2017 Effective Date March 15, 2021 Standard/ Standard/ Location / Category Method No. / Method Title & Section Facility Date Admixture BS EN 480-8 2012 Admixtures for concrete, motar and grout – Test Main Lab methods Part 8: Determination of the conventional dry material content Aggregate ASTM C29/C29M -17a Standard Test Method for Bulk Density (Unit Main Lab Weight) and Voids in Aggregate Aggregate ASTM C88 - 18 Standard Test Method for Soundness of Main Lab Aggregates by Use of Sodium Sulfate or AKE & P-043 SL Magnesium Sulfate Aggregate ASTM C117-17 Standard Test Method for Materials Finer than Main Lab 75-μm (No. 200) Sieve in Mineral Aggregates AKE-& P-043 SL by Washing Aggregate ASTM C123/C123M- Lightweight Particles in Aggregates Main Lab 14 Aggregate ASTM C127-15 Standard Test Method for Relative Density Main Lab (Specific Gravity) and Absorption of Coarse AKE & P-043 SL Aggregate Aggregate
    [Show full text]
  • Landslide Mechanisms in Hong Kong
    Landslide Mechanisms in Hong Kong S. R. Hencher Halcrow China Ltd., School of Earth & Environment, the University of Leeds, UK Dept of Earth Sciences, Hong Kong University Abstract: This paper reviews the nature and mechanics of landslides in weathered terrain in Hong Kong. The vast majority of landslides occur during intense rainstorms and a relationship is presented that relates severity of landsliding to 24- hour rainfall. Deeper seated landslides are often delayed in that they occur days after intense rainstorms. The reasons for this appear to be chiefly hydrogeological as explained in this paper. A hydrogeological classification of landslide mechanisms is introduced. The conclusions are supported by case examples of numerous slope failures, the study of some of which have been taken to a forensic level. 1 INTRODUCTION Landsliding is a common hazard in Hong Kong and this hazard has been addressed over many years by the concerted efforts of the Hong Kong Government, their consultants and contractors through a specialized office now known as the Geotechnical Engineering Office. This office vets the designs of all new slopes and is going through a process of upgrading old slopes through the implementation of extensive landslide preventive works, wherever necessary. Over the last few years, it has also begun to tackle, in a managed way, the risks from landslides issuing from the steep and rugged natural terrain that is typical of most of the territory (Figure 1). The early history of the HK Government on dealing with the risk of landslides in Hong Kong is reviewed in Brand (1984). The current situation is described by GEO (2004), Chan et al (2007) and Tang et al (2007).
    [Show full text]
  • NZGS Symposium 20 Hind1.Pdf
    Hind, K.J. (2017) The Casagrande plasticity chart – does it help or hinder the NZGS soil classification process? Proc. 20th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier The Casagrande plasticity chart – does it help or hinder the NZGS soil classification process? K J Hind Tonkin & Taylor Ltd, Auckland, NZ. [email protected] (Corresponding author) Keywords: Casagrande, plasticity chart, soil classification ABSTRACT A routine part of any geotechnical investigation is the classification of the recovered soils. In New Zealand this should be undertaken in the field in accordance with the New Zealand Geotechnical Society’s guidelines. There is a general expectation that laboratory-based methods should both verify and enhance those classifications obtained in the field, yet it is not uncommon for the two to differ significantly. Field and laboratory data for fine-grained inorganic soils from across Auckland have provided an insight into the nature, magnitude and likely origins of these differences. It is demonstrated that field logging and the plasticity chart commonly assign the same materials to different soil groups. This appears to originate from the majority of soils being fundamentally plastic in nature yet displaying physical properties noticeably different from that expected for a clay due to the significant non-clay fraction. Furthermore the plasticity chart cannot be used to classify soils in accordance with the New Zealand taxonomy. As a result intermediate soil classifications incompatible with the plasticity chart are typically assigned in the field. Recommendations are given with respect to developing a stand-alone New Zealand-specific classification system and the use of both field and laboratory data.
    [Show full text]
  • Geotechnical Investigation and Testing — Field Testing Part 5: Flexible Dilatometer Test
    BS EN ISO 22476-5:2012 BSI Standards Publication Geotechnical investigation and testing — Field testing Part 5: Flexible dilatometer test NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW raising standards worldwide™ BS EN ISO 22476-5:2012 BRITISH STANDARD National foreword This British Standard is the UK implementation of EN ISO 22476-5:2012. It partially supersedes BS 5930:1999+A2:2010, which is currently being revised in order to remove conflicting material. The tests included in BS 5930:1999 (Clauses 25.7.2.1 and 25.7.4.1, and more generally in Clauses 27.7.3, 25.7.5 and 25.7.6) are also provided in this standard. In the meantime, where conflict arises between these documents, the provisions of BS EN ISO 22476-5:2012 take precedence. The UK participation in its preparation was entrusted to Technical Committee B/526/3, Site investigation and ground testing. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2013. Published by BSI Standards Limited 2013 ISBN 978 0 580 77122 4 ICS 93.020 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2013. Amendments/corrigenda issued since publication Date Text affected EUROPEAN STANDARD EN ISO 22476-5 NORME EUROPÉENNE EUROPÄISCHE NORM December 2012 ICS 93.020 English Version Geotechnical investigation and testing - Field testing - Part 5: Flexible dilatometer test (ISO 22476-5:2012) Reconnaissance et essais géotechniques - Essais en place Geotechnische Erkundung und Untersuchung - - Partie 5: Essai au dilatomètre flexible (ISO 22476-5:2012) Felduntersuchungen - Teil 5: Versuch mit dem flexiblen Dilatometer (ISO 22476-5:2012) This European Standard was approved by CEN on 25 November 2012.
    [Show full text]
  • Code of Practice for Ground Investigations BS 5930:2015 BRITISH STANDARD
    BS 5930:2015 BSI Standards Publication Code of practice for ground investigations BS 5930:2015 BRITISH STANDARD Publishing and copyright information The BSI copyright notice displayed in this document indicates when the document was last issued. © The British Standards Institution 2015 Published by BSI Standards Limited 2015 ISBN 978 0 580 80062 7 ICS 91.200 The following BSI references relate to the work on this document: Committee reference B/526/3 Draft for comment 14/30268442 DC Publication history First published 1957 Second edition 1981 Third edition October 1999 Fourth (present) edition July 2015 Amendments issued since publication Date Text affected BRITISH STANDARD BS 5930:2015 Contents Foreword v Introduction 1 1 Scope 2 2 Normative references 2 3 Terms and definitions 5 Section 1: Preliminary considerations 7 4 Primary objectives 7 5 Safety on investigation sites 8 6 Personnel for ground investigations 10 7 Investigation strategy 13 8 Planning and control of investigations 14 9 Quality management 15 Section 2: Desk study and field reconnaissance 16 10 General 16 11 Desk study 17 12 Field reconnaissance 19 13 Earlier uses and state of site 20 14 Aerial photographs and satellite imagery 22 Section 3: Planning ground investigations 26 15 Types of ground investigation 26 16 Geological mapping 29 17 Scope of the ground investigation 30 18 Frequency of sampling and testing 37 19 General considerations in the selection of methods of ground investigation 40 20 The effect of ground conditions on the selection of methods of intrusive
    [Show full text]
  • Specification for Subsurface Investigation 14 March 2019
    G&P Geotechnics Sdn Bhd Specification for Subsurface Investigation 14 March 2019 SPECIFICATION FOR SUBSURFACE INVESTIGATION 1.0 GENERAL REQUIREMENTS 1.1 Definitions These definitions refer to the Specification, Drawings, Condition of Contract and Bill of Quantities of this Soil Investigation Contract only. "Ancillary Works" means all appliances or things of whatsoever nature required to be installed or constructed on, under, in or through the Site and which are to remain on Site and become the property of the Employer in accordance with the Contract upon the issuance of a Certificate of Completion in respect of the Site operations or section or part thereof as the case may be. "Equipment" means any appliances or things of whatsoever nature required temporarily for carrying out the Site Operations but does not include anything which forms part of the Ancillary Works. "Exploratory Hole" means any kind of hole made to explore ground conditions. "Laboratory Testing" means the testing operations and processes necessary for the preparation of the Report to be carried out in accordance with the Contract at a laboratory approved by the Employer on samples and cores obtained during the Site Operations. "Report" means the report to be prepared and submitted in accordance with the Contract. "Appendix" means the lists of Site Operations, Laboratory Testing and other requirements referred to in the Specification. "Site Operations" means all the works of every kind including Ancillary Works required to be carried out on, under, in or through the Site in accordance with the Contract. 1.2 Information Information particular to the Contract is provided by the Employer in Annexure 1 to Annexure 4 as follows: Annexure 1 - Scope and Object of the Contract.
    [Show full text]