Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis Journal of Visualized Experiments www.jove.com Video Article Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis Rekha Marimuthu1,2, Habib Francis1,2, Suat Dervish3, Stephen C.H. Li4, Heather Medbury*1,2, Helen Williams*1,2 1 Department of Surgery, Vascular Biology Research Centre, Westmead Hospital 2 Westmead Clinical School, Department of Surgery, The University of Sydney 3 Westmead Research Hub, Westmead Institute for Medical Research 4 Institute for Clinical Pathology and Medical Research, Westmead Hospital * These authors contributed equally Correspondence to: Heather Medbury at [email protected] URL: https://www.jove.com/video/57941 DOI: doi:10.3791/57941 Keywords: Immunology and Infection, Issue 140, Monocyte, immunology, flow cytometry, inflammation, monocyte gating, monocyte marker expression, macrophages, atherosclerosis Date Published: 10/17/2018 Citation: Marimuthu, R., Francis, H., Dervish, S., Li, S.C., Medbury, H., Williams, H. Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis. J. Vis. Exp. (140), e57941, doi:10.3791/57941 (2018). Abstract Monocytes are key contributors in various inflammatory disorders and alterations to these cells, including their subset proportions and functions, can have pathological significance. An ideal method for examining alterations to monocytes is whole blood flow cytometry as the minimal handling of samples by this method limits artifactual cell activation. However, many different approaches are taken to gate the monocyte subsets leading to inconsistent identification of the subsets between studies. Here we demonstrate a method using whole blood flow cytometry to identify and characterize human monocyte subsets (classical, intermediate, and non-classical). We outline how to prepare the blood samples for flow cytometry, gate the subsets (ensure contaminating cells have been removed), and determine monocyte subset expression of surface markers — in this example M1 and M2 markers. This protocol can be extended to other studies that require a standard gating method for assessing monocyte subset proportions and monocyte subset expression of other functional markers. Video Link The video component of this article can be found at https://www.jove.com/video/57941/ Introduction Monocytes are a type of white blood cells which play a major role in promoting and resolving inflammation. There are three main subsets of monocytes recognized, classical (~85%), intermediate (~5%), and non-classical (~10%) monocytes, which are characterized by their level of cluster of differentiation (CD)14 and CD16 expression1. The proportions of monocyte subsets can differ with the presence of disease, such as an increased proportion of intermediates in various inflammatory states2,3 including cardiovascular disease, where the level of intermediates is associated with clinical events4,5. Furthermore, in disease conditions, monocytes can also undergo functional changes, with many changes detectable by a difference in surface marker expression6,7. One such example is monocyte M1-skewing, an increase in markers associated with M1 macrophages, which has been observed in cardiovascular disease, diabetes, obesity, and metabolic syndrome7,8,9,10. Despite the popularity of flow cytometry to assess monocyte subset proportion and function, there is a considerable variability in sample preparation and subset gating between studies which makes it difficult to compare findings between such studies. Importantly, there is no consensus in the demarcation of monocyte subsets, yet a standardized approach is essential given the clinical significance of changes in subset proportions in several diseases. Part of the difficulty in gating arises from the fact that monocytes differentiate from the classical through the intermediate to the non-classical subset11 and as such, monocytes exist as a continuous spectrum rather than distinct populations12. Interestingly, Zawada et al. showed that using either a rectangular or trapezoid gating of the intermediate subset, both resulted in a higher intermediate subset that predicted a cardiovascular endpoint13. This highlights that, at least for calculating proportions, the key issue is applying a consistent gating strategy between different samples (and studies), rather than attempting to definitively discriminate between subsets. While definitive gating may be more important when assessing function, the change in marker expression between subsets is incremental12,14, and thus again, consistency in gating is perhaps key. As such, an objective gating method that reproducibly apportions the monocyte subsets between different samples is needed. The purpose of the method presented here is to gate monocyte subsets with a clear explanation and justification for the gating technique employed and assess the subsets for surface marker expression, thus providing a method which allows researchers to have confidence in the use of this technique when assessing different samples. Copyright © 2018 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported October 2018 | 140 | e57941 | Page 1 of 10 License Journal of Visualized Experiments www.jove.com Protocol This study has been approved by the WSLHD Human Research Ethics committee (HREC) (approval AU RED HREC/15/WMEAD/289). 1. Sample Preparation for Whole Blood Flow Cytometry NOTE: As human blood is potentially infectious, the sample set-up should be performed in a biohazard hood. 1. Collect the blood samples from the participants into 3 mL ethylene diamine tetra acetic acid (EDTA) tubes. 2. Determine the white blood cell (WBC) count using a hematology analyzer or hemocytometer. 3. Dilute with phosphate buffered saline (PBS) (pH ~7.4) to adjust the concentration to ~5 x 106 WBC/mL. 4. Prepare sufficient master mix for the number of tubes (e.g., for 14 tubes, prepare 16x master mix) by combining 16x volumes of 50 µL blood, 0.75 µL anti CD14-V450, 0.5 µL anti CD16-APC, and 0.625 µL anti HLA-DR-PerCP. Vortex and pipette 51.9 µL of mix into each tube (Table ). 1 NOTE: Antibodies should be titrated to determine optimal staining concentrations for the fluorescent antibodies used. 5. Add surface marker (M1 and M2 or isotype control, phycoerythrin (PE) labelled) antibodies (example as per Table 2) and PE labelled markers for T cells (CD3), B cells (CD19), neutrophils (CD66b), and natural killer (NK) cells (CD56) (Table 3). Vortex and incubate for 30 min, 4 °C in the dark. NOTE: Markers for lymphocytes, neutrophils, and NK cells are included only for the validation of the gating method. 6. Add 250 µL of combined red blood cell lysis/WBC fixing solution, vortex gently immediately, and incubate for 10 min in the dark at 4 °C. 7. Add 250 µL of PBS and spin cells down at 260 x g for 10 min at room temperature. 8. Remove supernatant, re-suspend cells in 300 µL of 1% formaldehyde. NOTE: Formaldehyde is toxic. Use nitrile gloves and use in fume hood. 9. Store at 4 °C protected from light until analysis is performed. NOTE: Flow analysis is recommended to be done within 48 h of sample preparation. 2. Flow Cytometry 1. Check flow cytometer log to ensure facility staff have performed quality control checks. NOTE: To ensure consistency between analyses, instrument quality control and maintaining consistent target fluorescence intensities using control beads are recommended. 2. To set up the flow cytometry experiment, click on “New experiment then “new specimen” and “new tube” to add tubes. Select bivariate plots by clicking on the icon and use the dropdown menus to select the axis parameters. Ensure inclusion of a CD16/CD14 plot and a plot displaying a detector alongside time to monitor the acquisition. 3. Insert tube and click “Acquire”. Check the instrument voltage settings ensuring that detector signals are not off scale. 4. Observe cells falling in the monocyte gate of the CD14/CD16 plot. Set recording threshold to 5,000 events for the classical monocyte gate and click on “Record”. 5. Continue to record data for remaining tubes. After data for all tubes has been recorded, export flow data as .fcs files for analysis. NOTE: To ensure accuracy, single color compensation controls should be recorded. A compensation matrix can be calculated and applied to the data before analysis to account for spectral spill over15,16. 3. Monocyte Gating 1. Open files in the analysis software. Double click tube name and select parameters from the dropdown menus to visualize the cells on a forward scatter area FSC(A)/forward scatter height FSC(H) plot. Create a doublet exclusion gate by clicking on the polygon gate tool icon and enclosing the cells as in (Figure 1A). 2. Select the gated cells (by double clicking on the gated region) and in the new display box adjust dropdown menu parameters to display the cells on an FSC(A)/side scatter SSC(A) plot. Click on the rectangular gate icon and generously select the monocyte population based on forward and side scatter properties to exclude the majority of lymphocytes, NK cells, and granulocytes (Figure 1B). 3. Select the gated cells and redisplay on a CD14/CD16 plot, selecting the parameters by using the dropdown menus. Click on the polygon gate to select monocytes based on their characteristic “┐” shape (Figure 1C). 4. Select the gated cells and display the monocytes on a CD16/HLA-DR plot by using the dropdown menus to select parameters. Click on the 17 polygon gate to select the HLA-DR positive cells and exclude any remaining NK cells and neutrophils (Figure 1D). 5. Select the gated cells and display the HLA-DR positive cells on a CD14/HLA-DR plot using dropdown menus to select parameters. Click on the polygon gate and draw a gate to exclude the HLA-DR high/CD14 low cells (B cells express high levels of HLA-DR but not CD14) (Figure ). 1E NOTE: B cell contamination may occur and therefore should be investigated. If the non-classical population in Figure 1C is not distinct from the cells to its left, then contamination is likely. Step 3.5 can be skipped if B cells are not overlapping with non-classical monocytes.
Recommended publications
  • For Inflammatory Bowel Disease
    250 NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedures overview of leukapheresis (white cell apheresis) for inflammatory bowel disease Introduction This overview has been prepared to assist members of the Interventional Procedures Advisory Committee (IPAC) in making recommendations about the safety and efficacy of an interventional procedure. It is based on a rapid review of the medical literature and specialist opinion. It should not be regarded as a definitive assessment of the procedure. Date prepared This overview was prepared in August 2004. Procedure names • Leukapheresis • White cell apheresis. • Leukocyte removal therapy. • Selective granulocyte and monocyte adsorption apheresis. • Leukocytapheresis. Specialty society • British Society of Gastroenterology. Description Indications Inflammatory bowel disease. Ulcerative colitis and Crohn’s disease are the most common forms of inflammatory bowel disease. Ulcerative colitis causes inflammation and ulceration of the rectum and sometimes the colon. Symptoms include bloody diarrhoea and rectal bleeding. Crohn’s disease usually causes inflammation and ulceration of the small and large intestines, but it can affect any part of the digestive tract. The main symptoms are abdominal pain, diarrhoea and weight loss. Both of these are chronic conditions, characterised by periods of clinical relapse and remission. The incidence of ulcerative colitis is around 10 to 20 per 100,000 per year in the UK and the incidence of Crohn’s disease is approximately 5 to 10 per 100,000 per year.1 Current treatment and alternatives Conservative treatments include dietary measures, and medications to control inflammation. Immunosuppressants may be used if other medical therapies are ineffective at maintaining remission. Patients with ulcerative colitis that does not respond to medical therapy may be treated with surgery to remove the colon.
    [Show full text]
  • Reference Ranges for Blood Concentrations of Eosinophils And
    Journal of Perinatology (2010) 30, 540–545 r 2010 Nature America, Inc. All rights reserved. 0743-8346/10 www.nature.com/jp ORIGINAL ARTICLE Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health-care system RD Christensen1,2, J Jensen1,3, A Maheshwari4 and E Henry1,3 1Intermountain Healthcare Women and Newborns Clinical Program, Ogden, UT, USA; 2McKay-Dee Hospital Center, Ogden, UT, USA; 3Institute for Healthcare Delivery Research, Salt Lake City, UT, USA and 4Divisions of Neonatology and Pediatric Gastroenterology, Departments of Pediatrics, Cell Biology, and Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Introduction Objective: Blood concentrations of eosinophils and monocytes are part Normal values for hematological parameters are not generally of the complete blood count. Reference ranges for these concentrations during available for neonates because blood is not drawn on healthy the neonatal period, established by very large sample sizes and modern neonates to establish normal ranges. Instead, ‘reference ranges’ are methods, are needed for identifying abnormally low or high values. used in neonatal hematology.1–6 These consist of the 5th to 95th Study Design: We constructed reference ranges for eosinophils per ml percentile values assembled from large numbers of neonates with and monocytes per ml among neonates of 22 to 42 weeks of gestation, minimal pathology or with pathology not thought to be relevant to on the day of birth, and also during 28 days after birth. Data were the laboratory parameter under study. Recent examples of their obtained from archived electronic records over an eight and one-half-year usefulness include the following: Reference ranges for erythrocyte period in a multihospital health-care system.
    [Show full text]
  • Generation of Monocyte-Derived Tumor-Associated Macrophages Using
    Benner et al. Journal for ImmunoTherapy of Cancer (2019) 7:140 J Immunother Cancer: first published as 10.1186/s40425-019-0622-0 on 28 May 2019. Downloaded from https://doi.org/10.1186/s40425-019-0622-0 RESEARCHARTICLE Open Access Generation of monocyte-derived tumor- associated macrophages using tumor- conditioned media provides a novel method to study tumor-associated macrophages in vitro Brooke Benner1, Luke Scarberry1, Lorena P. Suarez-Kelly2, Megan C. Duggan1, Amanda R. Campbell1, Emily Smith1, Gabriella Lapurga1, Kallie Jiang1, Jonathan P. Butchar1, Susheela Tridandapani1, John Harrison Howard2, Robert A. Baiocchi3, Thomas A. Mace1 and William E. Carson III1,2* Abstract Background: Tumor-associated macrophages (TAM) are expanded and exhibit tumor-promoting properties within the tumor microenvironment. Current methods to study TAM have not been replicated across cancer types and often do not include exogenous growth factors from the tumor, a key factor in TAM differentiation in vivo. Methods: In this study, an in vitro method to generate monocyte- derived TAM using tumor- conditioned media (TCM) and a cytokine cocktail containing IL-4, IL-10, and M-CSF was utilized to study the phenotype, morphology, and function of TAM across multiple cancer types. TCM was generated from two breast cancer cell lines and an Epstein-Barr virus-positive lymphoma cell line. The properties of in vitro generated TAM were compared to in vitro generated M1 and M2- like macrophages and TAM isolated from patients with cancer. Results: TAM generated in this fashion displayed an increase in CD163/CD206 co-expression compared to M2- like http://jitc.bmj.com/ macrophages (87 and 36%, respectively).
    [Show full text]
  • Immune Effector Monocyte–Neutrophil Cooperation Induced by the Primary Tumor Prevents Metastatic Progression of Breast Cancer
    Immune effector monocyte–neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer Catharina Hagerlinga,b,1,2, Hugo Gonzaleza,3, Kiarash Salaria,3, Chih-Yang Wanga,4, Charlene Lina, Isabella Roblesa, Merel van Gogha, Annika Dejmekc, Karin Jirströmb, and Zena Werba,d,2 aDepartment of Anatomy, University of California, San Francisco, CA 94143-0452; bDepartment of Clinical Sciences, Division of Clinical Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden; cDepartment of Translational Medicine, Lund University, Malmö SUS, SE-214 21 Malmö, Sweden; and dHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143 Contributed by Zena Werb, August 30, 2019 (sent for review May 3, 2019; reviewed by Yves DeClerck and Mikala Egeblad) Metastatic behavior varies significantly among breast cancers. Mech- patients’ breast cancer tumors and is hence an attractive preclinical anisms explaining why the majorityofbreastcancerpatientsnever model to find novel therapeutic alternatives for metastatic breast develop metastatic outgrowth are largely lacking but could underlie cancer (12). We furthermore validated our PDX-derived findings the development of novel immunotherapeutic target molecules. Here with a large primary breast cancer tissue microarray (TMA), pleural we show interplay between nonmetastatic primary breast cancer effusions from breast cancer patients and an immunocompetent and innate immune response, acting together to control metastatic syngeneic mammary cancer model. Taken together, we reveal in- progression. The primary tumor systemically recruits IFNγ-producing terplay between the primary breast cancer tumor and myeloid im- immune effector monocytes to the lung. IFNγ up-regulates Tmem173/ mune response, acting together to control metastatic progression.
    [Show full text]
  • Basophils Trigger Emphysema Development in a Murine Model of COPD Through IL-4–Mediated Generation of MMP-12–Producing Macrophages
    Basophils trigger emphysema development in a murine model of COPD through IL-4–mediated generation of MMP-12–producing macrophages Sho Shibataa,b, Kensuke Miyakea, Tomoya Tateishib, Soichiro Yoshikawaa, Yoshinori Yamanishia, Yasunari Miyazakib, Naohiko Inaseb, and Hajime Karasuyamaa,1 aDepartment of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; and bDepartment of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan Edited by Kazuhiko Yamamoto, the University of Tokyo; Max Planck–The University of Tokyo Center for Integrative Inflammology, the University of Tokyo, Tokyo, Japan, and accepted by Editorial Board Member Tadatsugu Taniguchi November 2, 2018 (received for review August 13, 2018) Chronic obstructive pulmonary disease (COPD) is a leading cause of COPD even after smoking has stopped (9). As an alternative morbidity and mortality worldwide. It has generally been consid- approach, a protease-induced model was established (10) soon ered a non-Th2-type lung disorder, characterized by progressive after the discovery of the association between α1-antitrypsin airflow limitation with inflammation and emphysema, but its deficiency and emphysema in humans (11), implying that an im- cellular and molecular mechanism remains ill defined, compared balance between proteases and antiproteases in the lung may re- with that of asthma characterized by reversible airway obstruc- sult in emphysema formation. Intratracheal or intranasal instillation tion. Here we show a previously unappreciated role for basophils of elastolytic enzymes, such as papain, human neutrophil elastase, at the initiation phase of emphysema formation in an elastase- and porcine pancreatic elastase, is utilized to trigger emphysema induced murine model of COPD in that basophils represent less formation (10, 12, 13).
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Neutrophil and Monocyte Adhesion Molecules in Bronchopulmonary
    F76 Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/fn.89.1.F76 on 1 January 2004. Downloaded from ORIGINAL ARTICLE Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids P Ballabh, M Simm, J Kumari, A N Krauss, A Jain, C Califano, M L Lesser, S Cunningham-Rundles ............................................................................................................................... Arch Dis Child Fetal Neonatal Ed 2004;89:F76–F83 Aims: To study a longitudinal change in the expression of adhesion molecules CD11b, CD18, and CD62L on neutrophils and monocytes in very low birth weight babies who develop respiratory distress syndrome, to compare these levels between bronchopulmonary dysplasia (BPD) and non-BPD infants, and to assess the effect of corticosteroid treatment on these adhesion molecules. See end of article for authors’ affiliations Methods: Of 40 eligible neonates, 11 neonates were oxygen dependent at 36 weeks (BPD 36 weeks), 16 ....................... infants were oxygen dependent at 28 days, but not at 36 weeks (BPD d28), and 13 infants did not develop BPD. Seventeen neonates received a six day course of steroid treatment. Expression of CD11b, CD18, and Correspondence to: Dr P Ballabh, Assistant CD62L was measured on neutrophils and monocytes in arterial blood on days 1, 3, 7, 14, 21, and 28, Professor, Division of and before and 2–3 days after initiation of dexamethasone treatment by flow cytometry. Neonatology, Department Results: CD18 expression on neutrophils and monocytes and CD62L on neutrophils, measured as mean of Pediatrics, NICU, 2nd fluorescent intensity, was significantly decreased in BPD neonates compared to non-BPD neonates on days Floor, Main Building, Westchester Medical 1–28.
    [Show full text]
  • Leukocytosis and Natural Killer Cell Function Parallel Neurobehavioral Fatigue Induced by 64 Hours of Sleep Deprivation
    Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. D F Dinges, … , E Icaza, M T Orne J Clin Invest. 1994;93(5):1930-1939. https://doi.org/10.1172/JCI117184. Research Article The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16- positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.
    [Show full text]
  • Eosinophil-To-Monocyte Ratio Is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients After Intravenous Thrombolysis
    Clinical Interventions in Aging Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Eosinophil-to-Monocyte Ratio is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients After Intravenous Thrombolysis Yueping Chen1,* Background: Eosinophil and monocyte have been demonstrated separately to be indepen­ Junli Ren2,3,* dent predictors of acute ischemic stroke (AIS). This study aimed to evaluate the association Naiping Yang2,3,* between eosinophil-to-monocyte ratio (EMR) and 3-month clinical outcome after treatment Honghao Huang2,3 with recombinant tissue plasminogen activator (rt-PA) for AIS patients. Simultaneously, we Xueting Hu2,3 made a simple comparison with other prognostic indicators, such as 24h neutrophil-to- lymphocyte ratio (NLR) and 24h platelet-to-lymphocyte ratio (PLR) to investigate the Fangyue Sun2,3 prognostic value of EMR. Tian Zeng2,3 2,3 Methods and Results: A total of 280 AIS patients receiving intravenous thrombolysis were Xinbo Zhou retrospectively recruited for this study. Complete blood count evaluations for EMR were 2,3 Wenjing Pan conducted on 24 hours admission. The poor outcome at 3-month was defined as the modified 2,3 Jingyu Hu Rankin Scale (mRS) of 3–6 and the mRS score for death was 6. The EMR levels in patients 4 Beibei Gao with AIS were lower than those in the healthy controls and showed a negative correlation 2 Shunkai Zhang with the NIHSS score. At the 3-month follow-up, multivariate logistic regression analysis Guangyong Chen 2 indicated an association among EMR, poor outcome and mortality. In addition, EMR had a higher predictive ability than popular biomarkers like NLR and PLR for 3-month mortality.
    [Show full text]
  • The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair
    International Journal of Molecular Sciences Review The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair Santiago Alvarez-Argote 1,2 and Caitlin C. O’Meara 1,2,3,* 1 Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA * Correspondence: [email protected] Abstract: Macrophages were first described as phagocytic immune cells responsible for maintain- ing tissue homeostasis by the removal of pathogens that disturb normal function. Historically, macrophages have been viewed as terminally differentiated monocyte-derived cells that originated through hematopoiesis and infiltrated multiple tissues in the presence of inflammation or during turnover in normal homeostasis. However, improved cell detection and fate-mapping strategies have elucidated the various lineages of tissue-resident macrophages, which can derive from embryonic origins independent of hematopoiesis and monocyte infiltration. The role of resident macrophages in organs such as the skin, liver, and the lungs have been well characterized, revealing functions well beyond a pure phagocytic and immunological role. In the heart, recent research has begun to decipher the functional roles of various tissue-resident macrophage populations through fate mapping and genetic depletion studies. Several of these studies have elucidated the novel and unex- pected roles of cardiac-resident macrophages in homeostasis, including maintaining mitochondrial function, facilitating cardiac conduction, coronary development, and lymphangiogenesis, among others. Additionally, following cardiac injury, cardiac-resident macrophages adopt diverse functions Citation: Alvarez-Argote, S.; such as the clearance of necrotic and apoptotic cells and debris, a reduction in the inflammatory O’Meara, C.C.
    [Show full text]
  • Monocyte-Derived Dendritic Cells Are Essential for Cd8+ T Cell Activation and Antitumor Responses After Local Immunotherapy
    ORIGINAL RESEARCH published: 23 November 2015 doi: 10.3389/fimmu.2015.00584 Monocyte-Derived Dendritic Cells Are Essential for CD8+ T Cell Activation and Antitumor Responses After Local Immunotherapy Sabine Kuhn† , Jianping Yang and Franca Ronchese* Malaghan Institute of Medical Research, Wellington, New Zealand Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitu- Edited by: mor immune responses and is associated with the appearance of a population Giovanna Schiavoni, of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node Istituto Superiore di Sanità, Italy (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show Reviewed by: that these moDCs are critical to the activation of antitumor immune responses. Carlos Alfaro, Clínica Universidad de Navarra, Spain Treatment with the immunostimulatory agents monosodium urate crystals and Kyle K. Payne, Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, The Wistar Institute, USA their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and *Correspondence: Franca Ronchese IL12p40. Blocking monocyte entry into the lymph node and tumor through neutral- [email protected] ization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T †Present address: Sabine Kuhn, cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes Institute for Clinical Chemistry and transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell Pathobiochemistry, Klinikum rechts priming in lymph node and delay tumor growth.
    [Show full text]
  • How Are White Blood Cells Classified?
    How are white blood cells classified? Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Types of White Blood Cells: Neutrophil Eosinophil Basophil Lymphocyte Monocyte . The types of white blood cells are shown above. The next page will describe lymphocytes in further detail. A healthy individual has all of these white blood cells types, but within specific ranges. Deviation from these ranges can indicate acute illness or a chronic disease. A mnemonic that is often used to remember the relative amount of each white blood cell that should be present is “Never Let Monkeys Eat Bananas.” Never Neutrophil Highest amounts Let Lymphocyte Monkeys Monocyte Eat Eosinophil Bananas Basophil Lowest amounts . In other words, neutrophils should always be present in higher amounts compared to the other cell types. This will be described further in “A first step in diagnosing LGL leukemia: The blood smear.” Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Introduction: White blood cells are blood cells that fight infection and disease. Lymphocytes are a type of white blood cell. They can identify antigens (substances foreign to the body) and cause an immune response. There are three types of lymphocytes: T-cell, NK-cell, and B-cell. In healthy adults, 10-15% of the lymphocytes are large granular lymphocytes (LGLs). To learn more about LGL cells, see “A first step in diagnosing LGL leukemia: The blood smear.” A person is diagnosed with LGL leukemia if there is a clonal (copied) population of T-cells or NK-cells present.
    [Show full text]