Understanding Space Weather to Shield Society: a Global Road Map for 2015–2025 Commissioned by COSPAR and ILWS

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Space Weather to Shield Society: a Global Road Map for 2015–2025 Commissioned by COSPAR and ILWS Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 55 (2015) 2745–2807 www.elsevier.com/locate/asr Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS ⇑ Carolus J. Schrijver a, , Kirsti Kauristie b,*, Alan D. Aylward c, Clezio M. Denardini d, Sarah E. Gibson e, Alexi Glover f, Nat Gopalswamy g, Manuel Grande h, Mike Hapgood i, Daniel Heynderickx j, Norbert Jakowski k, Vladimir V. Kalegaev l, Giovanni Lapenta m, Jon A. Linker n, Siqing Liu o, Cristina H. Mandrini p, Ian R. Mann q, Tsutomu Nagatsuma r, Dibyendu Nandy s, Takahiro Obara t, T. Paul O’Brien u, Terrance Onsager v, Hermann J. Opgenoorth w, Michael Terkildsen x, Cesar E. Valladares y, Nicole Vilmer z a Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304, USA b Finnish Meteorological Institute, FI-00560, Helsinki, Finland c University College London, Dept. of Physics and Astronomy, Gower Street, London WC1E 6BT, UK d Instituto Nacional de Pesquisas Espaciais, S. J. Campos, SP, Brazil e HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000, USA f RHEA System and ESA SSA Programme Office, 64293 Darmstadt, Germany g NASA Goddard Space Flight Center, Greenbelt, MD, USA h Univ. of Aberystwyth, Penglais STY23 3B, UK i RAL Space and STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK j DH Consultancy BVBA, Diestsestraat 133/3, 3000 Leuven, Belgium k German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany l Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russian Federation m KU Leuven, Celestijnenlaan 200B, Leuven 3001, Belgium n Predictive Science Inc., San Diego, CA 92121, USA o National Space Science Center, Chinese Academy of Sciences, Haidian District, Beijing 100190, China p Instituto de Astronomia y Fisica del Espacio, C1428ZAA Buenos Aires, Argentina q Dept. of Physics, Univ. Alberta, Edmonton, AB T6G 2J1, Canada r Space Weather and Environment Informatics Lab., National Inst. of Information and Communications Techn., Tokyo 184-8795, Japan s Center for Excellence in Space Sciences and Indian Institute of Science, Education and Research, Kolkata, Mohanpur 74125, India t Planetary Plasma and Atmospheric Research Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan u Space Science Department/Chantilly, Aerospace Corporation, Chantilly, VA 20151, USA v NOAA Space Weather Prediction Center, Boulder CO 80305, USA w Swedish Institute of Space Physics, 75121 Uppsala, Sweden x Space Weather Services, Bureau of Meteorology, Surry Hills NSW, Australia y Institute for Scientific Research, Boston College, Newton, MA 02459, USA z LESIA, Observatoire de Paris, CNRS, UPMC, Universite´ Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France Received 1 December 2014; received in revised form 3 March 2015; accepted 18 March 2015 Available online 3 April 2015 Abstract There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by ⇑ Corresponding authors. E-mail address: [email protected] (C.J. Schrijver). http://dx.doi.org/10.1016/j.asr.2015.03.023 0273-1177/Ó 2015 COSPAR. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2746 C.J. Schrijver et al. / Advances in Space Research 55 (2015) 2745–2807 improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and con- tinues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun–Earth system observatory. But the domain of space weather is vast – extending from deep within the Sun to far outside the planetary orbits – and the physics complex – including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun–Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recom- mend advances through priority focus (1) on observation-based modeling throughout the Sun–Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar- wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a com- prehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations. Ó 2015 COSPAR. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Space weather; COSPAR/ILWS road map panel Contents Executive summary. 2747 1. Introduction . 2750 2. Space weather: society and science . 2751 3. User needs . 2754 3.1. Electric power sector . 2755 3.2. Positioning, navigation, and communication . 2756 3.3. (Aero) space assets . 2757 4. Promising opportunities and some challenges . 2757 4.1. The opportunity of improved CME forecasts. 2757 4.1.1. Solar surface . 2759 4.1.2. Heliosphere . 2760 4.2. Challenges and opportunities for geomagnetic disturbances. 2761 4.2.1. L1 observations: Validation of >1 hr forecasts and interaction with the magnetosphere . 2761 4.2.2. Reconfigurations in the magnetosphere–ionosphere system and strong GICs . 2761 4.3. Research for improved forecasts of ionospheric storm evolution . 2762 4.4. Steps for improved radiation belt forecasts and specification. 2763 4.5. Challenges for forecasts with lead times beyond 2 days. 2764 4.6. Specification of extreme conditions and forecasts of the solar cycle . 2764 5. General recommendations . 2765 5.1. Research: observational, computational, and theoretical needs . 2767 5.2. Teaming of research and users: coordinated collaborative environment . 2768 5.3. Collaboration between agencies and communities. 2771 6. Research: observational, numerical, and theoretical recommendations . 2773 7. Concepts for highest-priority research and instrumentation . 2775 7.1. Quantify active-region magnetic structure to model nascent CMEs . 2775 7.2. Coupling of the solar wind to the magnetosphere and ionosphere, and strong GICs . 2776 7.3. Global coronal field to drive models for the magnetized solar wind . 2777 7.4. Quantify the state of the coupled magnetosphere-ionosphere system . 2778 7.5. Observation-based radiation environment modeling . 2778 7.6. Understand solar energetic particles throughout the Sun–Earth system . 2778 8. In conclusion. 2779 Appendix A. Roadmap team and process . 2779 Appendix B. Roadmap methodology: tracing sample impact chains . 2780 Appendix C. State of the art in the science of space weather . 2781 C.1. Achievements . 2781 C.2. Prospects for future work . 2782 C.J. Schrijver et al. / Advances in Space Research 55 (2015) 2745–2807 2747 Appendix D. Research needs for the solar-heliospheric domain . 2783 Appendix E. Research needs for the geospace domain . 2787 E.1. Magnetospheric field variability and geomagnetically-induced currents . 2787 E.2. Magnetospheric field variability and particle environment . 2791 E.3. Ionospheric variability. 2795 Appendix F. Concepts for highest-priority instrumentation . 2797 F.1. Binocular vision for the corona to quantify incoming CMEs . 2797 F.2. 3D mapping of solar field involved in eruptions . 2798 F.3. Strong GICs driven by rapid reconfigurations of the magnetotail . 2798 F.4. Coordinated networks for geomagnetic and ionospheric variability . 2799 F.5. Mapping the global solar field . 2800 F.6. Determination of the foundation of the heliospheric field. 2801 F.7. Auroral imaging to map magnetospheric activity and to study coupling . 2802.
Recommended publications
  • Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR
    Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR R.A. Fallows ASTRON - the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands [email protected] M.M. Bisi RAL Space, Science & Technology Facilities Council - Rutherford Appleton Laboratory, Harwell, Oxford, Oxfordshire, OX11 0QX, United Kingdom [email protected] B. Forte Dept of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom [email protected] Th. Ulich Sodankyl¨aGeophysical Observatory, T¨ahtel¨antie62, FIN-99600 Sodankyl¨a,Finland A.A. Konovalenko Institute of Radio Astronomy, 4 Chervonopraporna str., 61002 Kharkov, Ukraine G. Mann Leibniz-Institut fr Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany and C. Vocks Leibniz-Institut fr Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany arXiv:1608.04504v1 [astro-ph.IM] 16 Aug 2016 ABSTRACT Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out.
    [Show full text]
  • Study Space Weather Effects from the Sun to the Ground
    国际空间科学研究所—北京 Study Space Weather Effects from the Sun to the Ground October 10-19, 2018, Sanya, China ND THE 2 PACE SCIENCE S SCHOOL HANDBOOK www.apsco.int/2nd_space_science_school Sponsors: 2nd apsco & issi-bj space science school with eiscat CONTENTS ORGANIZERS 6 SPONSORS 9 SCHOOL OUTLINE AND PROGRAM 10 School Program 13 Students Working Groups Outlines 16 Sun/Heliosphere Working Group 16 Impact and MIT Working Group 20 EISCAT Working Group 22 Effects on Satellites and Ground-based Infrastructures W.G. 25 PRACTICAL INFORMATION 27 Registration 27 Venue 27 VISA 29 Transportation 31 Accommodation 33 Meals 34 Useful information 34 Contact Persons 34 LECTURERS AND LECTURES 35 Lecturers and Lectures 35 Student Groups Tutors 48 Sun/Heliosphere Group Tutors 48 Impact and MIT Group Tutors 50 EISCAT Working Group Tutors 52 Effects on Satellites and Ground-based Infrastructures Working Group Tutors 58 Editor/Graphic Design: Anna YANG, ISSI-BJ 2 ND THE 2 study space weather effects from the sun to the ground PACE SCIENCE october 10-19, 2018, radi, sanya, China S SCHOOL I am most pleased and Space Weather is a timely and excellent FOREWORDS honored to write this research topic for students, since it message for the second combines in one-event, observed from edition of our ISSI-BJ - the Sun to the Ground, different research APSCO Space Science fields and topics. For completeness of biennial School on the overall study of these topics, the 2018 “Study Space Weather school is also co-organized with the EISCAT Effects; From the Sun to Scientific Association. I strongly hope the Ground”.
    [Show full text]
  • Observations of Precipitation Energies During Different Types of Pulsating
    https://doi.org/10.5194/angeo-2020-43 Preprint. Discussion started: 7 July 2020 c Author(s) 2020. CC BY 4.0 License. Observations of precipitation energies during different types of pulsating aurora Fasil Tesema1,2, Noora Partamies1,2, Hilde Nesse Tyssøy2, and Derek McKay3 1The University Centre in Svalbard (UNIS), Norway, 2Birkeland Centre for Space Science, University of Bergen, Norway, 3NORCE Norwegian Research Centre AS, Tromsø, Norway. Correspondence: Fasil Tesema ([email protected]) Abstract. Pulsating aurora (PsA) is a diffuse type of aurora with different structures switching on and off with a period of few seconds. It is often associated with energetic electron precipitation (>10 keV) resulted in the interaction between mag- netospheric electrons and electromagnetic waves in the magnetosphere. Recent studies categorize pulsating aurora into three different types: amorphous pulsating aurora (APA), patchy pulsating aurora (PPA), and patchy aurora (PA) based on the spatial 5 extent of pulsations and structural stability. Differences in precipitation energies of electrons associated with these types of pulsating aurora have been suggested. In this study, we further examine these three types of pulsating aurora using electron density measurements from the European Incoherent Scatter (EISCAT) VHF/UHF radar experiments and Kilpisjärvi Atmo- spheric Imaging Receiver Array (KAIRA) cosmic noise absorption (CNA) measurements. Based on ground-based all-sky camera images over the Fennoscandian region, we identified a total of 92 PsA events in the years between 2010 and 2020 10 with simultaneous EISCAT experiments. Among these events, 39, 35, and 18 were APA, PPA, and PA types with a collective duration of 58 hrs, 43 hrs, and 21 hrs, respectively.
    [Show full text]
  • Observations of Precipitation Energies During Different Types of Pulsating Aurora
    Ann. Geophys., 38, 1191–1202, 2020 https://doi.org/10.5194/angeo-38-1191-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Observations of precipitation energies during different types of pulsating aurora Fasil Tesema1,2, Noora Partamies1,2, Hilde Nesse Tyssøy2, and Derek McKay3,4 1The University Centre in Svalbard (UNIS), Longyearbyen, Norway 2Birkeland Centre for Space Science, University of Bergen, Bergen, Norway 3Finnish Centre for Astronomy with ESO, FINCA, University of Turku, Turku, Finland 4Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland Correspondence: Fasil Tesema ([email protected]) Received: 30 June 2020 – Discussion started: 7 July 2020 Revised: 21 September 2020 – Accepted: 29 September 2020 – Published: 13 November 2020 Abstract. Pulsating aurora (PsA) is a diffuse type of aurora erage during PPA (0.33 dB) compared to PA (0.23 dB) and with different structures switching on and off with a period especially APA (0.17 dB). In general, this suggests that the of a few seconds. It is often associated with energetic elec- precipitating electrons responsible for APA have a lower en- tron precipitation (> 10 keV) resulting in the interaction be- ergy range compared to PPA and PA types. Among the three tween magnetospheric electrons and electromagnetic waves categories, the magnitude of the maximum electron den- in the magnetosphere. Recent studies categorize pulsating sity shows higher values at lower altitudes and in the late aurora into three different types – amorphous pulsating au- magnetic local time (MLT) sector (after 5 MLT) during PPA rora (APA), patchy pulsating aurora (PPA), and patchy aurora than during PA or APA.
    [Show full text]
  • Characterisation of Ionospheric Irregularities DTP Research Theme
    PROJECT TITLE: Characterisation of ionospheric irregularities DTP Research Theme: Dynamic Earth Lead Institution: University of Bath Lead Supervisor: Dr Biagio Forte, University of Bath, Electronic and Electrical Engineering Co-Supervisor: Dr Ivan Astin, University of Bath, Electronic and Electrical Engineering Co-Supervisor: Dr Andrew Kavanagh, British Antarctic Survey Project Enquiries: [email protected]; [email protected] Project keywords: Atmospheric Physics, Plasma Physics, Geophysics, (Space Weather, Scintillation, Ionosphere, GNSS, EISCAT) Project Background The Earth’s ionosphere can affect the propagation of radio waves that traverse it. Ionospheric disturbances associated with adverse space weather conditions introduce perturbations on trans-ionospheric radio waves that translate into fluctuations of signal intensity and phase, known as scintillation. Large-scale structures in the ionospheric electron density (typically associated with plasma instability mechanisms) cascade into smaller scale structures in a turbulent fashion. It is the presence of these small-scale ionospheric structures (i.e. irregularities) that introduces scintillation on radio waves. The cascade from larger to smaller scale irregularities can be characterised and modelled by observing scintillation over different radio wave frequencies (as scintillation varies with the radio wave frequency). The characterisation of the cascade is critical for the forecast of scintillation in the presence of diverse space weather conditions. Here, we will use sophisticated radars, radio telescopes, Global Navigation Satellite System (GNSS) radio receivers to answer fundamental questions about ionospheric turbulence. We will investigate the spatial scales over which ionospheric irregularities cascade; we will establish the type of the cascade and the type of plasma instability that determines it. Project Aims and Methods You will join a vibrant team of researchers at Bath and BAS.
    [Show full text]
  • Pulsating Aurora and Cosmic Noise Absorption Associated with Growth-Phase Arcs
    Ann. Geophys., 36, 59–69, 2018 https://doi.org/10.5194/angeo-36-59-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs Derek McKay1,2, Noora Partamies3,4, and Juha Vierinen1 1Department of Physics and Technology, University of Tromsø, Tromsø, Norway 2Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland 3UNIS University Centre in Svalbard, Svalbard, Norway 4Birkeland Centre for Space Science, Bergen, Norway Correspondence: Derek McKay ([email protected]) Received: 3 September 2017 – Revised: 15 November 2017 – Accepted: 6 December 2017 – Published: 18 January 2018 Abstract. The initial stage of a magnetospheric substorm shows that the substorm expansion-phase dynamics are not is the growth phase, which typically lasts 1–2 h. During the required to closely precede the pulsating aurora. growth phase, an equatorward moving, east–west extended, Keywords. Ionosphere (auroral ionosphere) optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous 1 Introduction all-sky camera and imaging riometer observations. The opti- cal and riometric observations allow determination of the lo- Polar magnetospheric substorms follow a sequence starting cation of the precipitation within growth-phase arcs of low- with a latitudinally narrow auroral arc, called the growth- ( < 10 keV) and high- (> 10 keV) energy electrons, respec- phase arc, which extends hundreds of kilometres east–west. tively. The observations indicate that growth-phase arcs have This arc evolves until the sudden commencement of com- the following characteristics: plex and conspicuous activity, referred to as the expansion phase.
    [Show full text]
  • A LOFAR Observation of Ionospheric Scintillation from Two Simultaneous Travelling Ionospheric Disturbances R.A
    submitted to Journal of Space Weather and Space Climate c The author(s) under the Creative Commons Attribution 4.0 International License (CC BY 4.0) A LOFAR Observation of Ionospheric Scintillation from Two Simultaneous Travelling Ionospheric Disturbances R.A. Fallows1x, B. Forte2, I. Astin2, T. Allbrook2{, A. Arnold2k, A. Wood3, G. Dorrian4, M. Mevius1, H. Rothkaehl5, B. Matyjasiak5, A. Krankowski6, J.M. Anderson7;8, A. Asgekar9, I.M. Avruch10, M.J.Bentum1, M.M. Bisi11, H.R. Butcher12, B. Ciardi13, B. Dabrowski6, S. Damstra1, F. de Gasperin14, S. Duscha1, J. Eislo¨ffel15, T.M.O Franzen1, M.A. Garrett16;17, J.-M. Grießmeier18;19, A.W. Gunst1, M. Hoeft15, J.R. Horandel¨ 20;21;22, M. Iacobelli1, H.T. Intema17, L.V.E. Koopmans23, P. Maat1, G. Mann24, A. Nelles25;26, H. Paas27, V.N. Pandey1;23, W. Reich28, A. Rowlinson1;29, M. Ruiter1, D.J. Schwarz30, M. Serylak31;32, A. Shulevski29, O.M. Smirnov33;31, M. Soida34, M. Steinmetz24, S. Thoudam35, M.C. Toribio36, A. van Ardenne1, I.M. van Bemmel37, M.H.D. van der Wiel1, M.P. van Haarlem1, R.C. Vermeulen1, C. Vocks24, R.A.M.J. Wijers29, O. Wucknitz28, P. Zarka38, and P. Zucca1 1 ASTRON - the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, the Netherlands 2 Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK 3 School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK 4 Space Environment and Radio Engineering, School of Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 5 Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw, Poland 6 Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, ul.
    [Show full text]
  • Type III Radio Bursts Observations on 20Th August 2017 and 9Th September 2017 with LOFAR Bałdy Telescope
    remote sensing Article Type III Radio Bursts Observations on 20th August 2017 and 9th September 2017 with LOFAR Bałdy Telescope Bartosz Dabrowski 1,* , Paweł Flisek 1 , Katarzyna Mikuła 1 , Adam Fro ´n 1 , Christian Vocks 2 , Jasmina Magdaleni´c 3,4 , Andrzej Krankowski 1 , PeiJin Zhang 5 , Pietro Zucca 6 and Gottfried Mann 2 1 Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, 10-719 Olsztyn, Poland; pawel.fl[email protected] (P.F.); [email protected] (K.M.); [email protected] (A.F.); [email protected] (A.K.); 2 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany; [email protected] (C.V.); [email protected] (G.M.) 3 Solar-Terrestrial Centre of Excellence—SIDC, Royal Observatory of Belgium, 3 Avenue Circulaire, 1180 Uccle, Belgium; [email protected] 4 Center for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium 5 CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China (USTC), Hefei 230026, China; [email protected] 6 ASTRON, The Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991PD Dwingeloo, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: We present the observations of two type III solar radio events performed with LOFAR (LOw-Frequency ARray) station in Bałdy (PL612), Poland in single mode. The first event occurred on 20th August 2017 and the second one on 9th September 2017. Solar dynamic spectra were recorded in the 10 MHz up to 90 MHz frequency band.
    [Show full text]
  • First Type III Solar Radio Bursts of Solar Cycle 25
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Kallunki, Juha; McKay, Derek; Tornikoski, Merja First Type III Solar Radio Bursts of Solar Cycle 25 Published in: Solar Physics DOI: 10.1007/s11207-021-01790-9 Published: 01/04/2021 Document Version Publisher's PDF, also known as Version of record Published under the following license: CC BY Please cite the original version: Kallunki, J., McKay, D., & Tornikoski, M. (2021). First Type III Solar Radio Bursts of Solar Cycle 25. Solar Physics, 296(4), [57]. https://doi.org/10.1007/s11207-021-01790-9 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) Solar Phys (2021) 296:57 https://doi.org/10.1007/s11207-021-01790-9 First Type III Solar Radio Bursts of Solar Cycle 25 Juha Kallunki1 · Derek McKay1,2,3 · Merja Tornikoski1 Received: 15 January 2021 / Accepted: 16 February 2021 © The Author(s) 2021 Abstract The minimum of the previous solar cycle, Solar Cycle 24, occurred in Decem- ber 2019, which also marked the start of the new Solar Cycle 25.
    [Show full text]
  • 2050 Vision for Geospace Radio Science Roger H
    Heliophysics 2050 White Papers (2021) 4102.pdf 2050 Vision for Geospace Radio Science Roger H. Varney, Anthea Coster, Philip J. Erickson, David L. Hysell, and Elizabeth Kendall Radio waves strongly interact with free electrons in space plasmas, and these interactions form both the source of space weather impacts on communication and navigation systems as well as the basis for a variety of plasma measurement techniques. The history of geospace research has been driven by discoveries made with increasingly sophisticated radio techniques. The incoherent scatter radar (ISR) technique in particular has become one of the most incisive ionospheric measurement techniques since it provides complete altitude profiles of all the plasma properties simultaneously, including plasma density, electron and ion temperatures, and light ion composition in the topside. Recent notable examples of impactful research using ISRs include the discovery of extreme polar cap electric fields that do not saturate, the revelation that pulsating auroras are associated with heating of the F-region ionosphere and ion upflow, the detections of high-altitude ionospheric irregularities extending up well beyond the F-layer at mid-latitudes, and the observations of an unexpected ionospheric uplift during a solar eclipse. The ISRs continue to play a critical role in diagnosing the coupled atmosphere and geospace system, including contributing to coordinated studies of the ionospheric responses to sudden stratospheric warmings as tracers of whole atmosphere coupling pathways, advances in understanding of ion outflow and heavy ion circulation in geospace, and observations of subauroral fast flows and related stormtime phenomena which redistribute mass and energy on a global scale. The last decade has witnessed tremendous technological advances that enable future radio instrument designs that were previously unattainable.
    [Show full text]
  • Radio Observatories and Instrumentation Used in Space Weather Science and Operations
    Radio observatories and instrumentation used in space weather science and operations Eoin Carley, Carla Baldovin, Pieter Benthem, Mario Bisi, Richard Fallows, Peter Gallagher, Michael Olberg, Hanna Rothkaehl, Rene Vermeulen, Nicole Vilmer, et al. To cite this version: Eoin Carley, Carla Baldovin, Pieter Benthem, Mario Bisi, Richard Fallows, et al.. Radio observatories and instrumentation used in space weather science and operations. Journal of Space Weather and Space Climate, EDP sciences, 2020, 10, pp.7. 10.1051/swsc/2020007. hal-02552311 HAL Id: hal-02552311 https://hal.sorbonne-universite.fr/hal-02552311 Submitted on 23 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Space Weather Space Clim. 2020, 10,7 Ó E.P. Carley et al., Published by EDP Sciences 2020 https://doi.org/10.1051/swsc/2020007 Available online at: Topical Issue - Scientific Advances from the European www.swsc-journal.org Commission H2020 projects on Space Weather RESEARCH ARTICLE OPEN ACCESS Radio observatories and instrumentation used in space weather science and operations
    [Show full text]
  • Understanding Space Weather to Shield Society: a Global Road Map
    Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS Carolus J. Schrijvera,∗, Kirsti Kauristieb,∗, Alan D. Aylwardc, Clezio M. Denardinid, Sarah E. Gibsone, Alexi Gloverf, Nat Gopalswamyg, Manuel Grandeh, Mike Hapgoodi, Daniel Heynderickxj, Norbert Jakowskik, Vladimir V. Kalegaevl, Giovanni Lapentam, Jon A. Linkern, Siqing Liuo, Cristina H. Mandrinip, Ian R. Mannq, Tsutomu Nagatsumar, Dibyendu Nandis, Takahiro Obarat, T. Paul O’Brienu, Terrance Onsagerv, Hermann J. Opgenoorthw, Michael Terkildsenx, Cesar E. Valladaresy, Nicole Vilmerz aLockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA94304, USA bFinnish Meteorological Institute, Finland cUniversity College London, Dept. of physics and astronomy, Gower Street, London WC1E 6BT, UK dInstituto Nacional de Pesquisas Espaciais, Brazil eHAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000, USA fRHEA System and ESA SSA Programme Office, Darmstadt, Germany gNASA Goddard Space Flight Center, Greenbelt, MD, USA hUniv. of Aberystwyth, Penglais STY23 3B, UK iRAL Space and STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, UK jDH Consultancy BVBA, Diestsestraat 133/3, 3000 Leuven, Belgium kGerman Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany lSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia mKU Leuven, Celestijnenlaan 200B, Leuven 3001, Belgium nPredictive Science Inc., San Diego, CA, USA oNational Space Science Center, Chinese Academy of Sciences,
    [Show full text]