Expanded View Figures

Total Page:16

File Type:pdf, Size:1020Kb

Expanded View Figures Valentina Quarantotti et al The EMBO Journal Expanded View Figures Figure EV1. The effect of combined nocodazole A PCM1 locus and cytochalasin-B treatment on the distribution of endogenously labelled PCM1-GFP in DT40 cells. 32 33 3435 UTR A Diagram showing the GFP construct used to target the chicken PCM1 locus at the C-terminus on both alleles, by homologous recombination. Highlighted the Sal1 and BamH1 sites used for 2.8 kb 0.7 kb ~ 3 kb 3.3 kb restriction digestion to clone the LA (Left Arm) LA GFP Blasti/Puro/His RA and the RA (Right Arm) and to replace the resistance cassette. Clones were screened for Sal1BamH1 BamH1 Sal1 antibiotic resistance genes blasticidin (Blasti), puromycin (Puro) or Histidinol (His). LoxP sites B flanking the resistance cassette are represented by red triangles. The dashed lines indicate the sites of recombination and integration in the GFP γ-tubulin GFP, γ-tubulin, DNA PCM1 locus. Confirmation of targeting was carried out by Western blotting, as shown in Fig 1B–D. B Representative immunofluorescence images of DMSO cell lines with genotypes as indicated, treated with both nocodazole (2 lg/ml) and cytochalasin-B (1 lg/ml). DMSO-treated cells were used as a control (DMSO, upper panels). 2 PCM1-GFP Treatments were carried out for h, and cells were co-stained with antibodies against GFP WT (green) and c-tubulin (red). DNA is in blue. Nocodazole + Images correspond to maximum intensity Cytochalasin-B projections of confocal micrographs. Asterisks mark cells with dispersed satellites. Note that drug treatment leads to an increase in large and a decrease in small satellite granules in all three genotypes, but the effects are more prominent in acentriolar than in WT cells. Scale bars: 5 lm. DMSO * * PCM1-GFP STIL-KO Nocodazole + Cytochalasin-B DMSO * PCM1-GFP CEP152-KO Nocodazole + Cytochalasin-B ª 2019 The Authors The EMBO Journal e101082 | 2019 EV1 The EMBO Journal Valentina Quarantotti et al Figure EV2. Comparisons of CS-WT with published datasets. ▸ A Venn diagram showing the number of proteins identified in three datasets: CS-WT, PCM1-BioID (Gupta et al, 2015) and PCM1-FLAG IP (Gupta et al, 2015). Note that this and all subsequent analyses were performed on human orthologues of the chicken proteins from CS-WT. B Venn diagrams showing the number of published CS components (illustrated in the table in C) detected in each of the indicated datasets. C Table depicts previously reported CS components and their detection in the indicated datasets. D Venn diagram showing the number of centrosomal proteins based on the human centrosome proteome dataset (Jakobsen et al, 2011) detected in each of the indicated datasets. Note that the majority of the proteins detected in both CS-WT and PCM1-BioID are centrosomal proteins (33/43). E Venn diagram showing the overlap between proteins identified in CS-WT and in a functional screen for positive regulators of Hedgehog signalling (Breslow et al, 2018). EV2 The EMBO Journal e101082 | 2019 ª 2019 The Authors Valentina Quarantotti et al The EMBO Journal AB C Published CS components Number of published CS components BBS4 FOPNL CCDC112 PCM1-BioID in indicated datasets CS-WT (Gupta et al., 2015) CDK1 HAUS6 LRRC49 PCM1-BioID CS-WT (Gupta et al., 2015) CEP95 WDR67 ODF2L CEP290 PCM1 TEX9 176 29 84 # 11 9 5 DZIP1 CCDC14 CCDC11 14 4 15 HOOK3 CEP90 CCDC13 8 # 0 5 NIN CEP131 CCDC113 15 PCNT KIAA0753 CEP126 0 PRKACB MIB1 CETN3** PCM1-FLAG IP SDCCAG8 OFD1 DISC1 (Gupta et al., 2015) PCM1-FLAG IP SPAG5 SSX2IP HAP1 (Gupta et al., 2015) C2CD3 CCNB2* HTT # D CCDC18 CEP72 KIZUNA CCDC66 NPHP1* Number of centrosomal proteins CSPP1** in indicated datasets CEP63 MED4 PAR6a PCM1-BioID CEP89 WRAP73* TCTN3 CS-WT (Gupta et al., 2015) FOP C11ORF49 VPS4 Present exclusively in CS-WT 48 22 16 Present in CS-WT and PCM1-BioID Present in all datasets 11 Present in PCM1-BioID and PCM1-FLAG IP 1 7 Present exclusively in PCM1-BioID Absent from all datasets 1 *Absent from CS-WT, but present in CS-STIL and/or CS-CEP152 **Detected in Filtered Data from WTPCM1-GFP cells PCM1-FLAG IP and present in CS-STIL and CS-CEP152 (Gupta et al., 2015) #Not in Gallus gallus genome E Positive regulators of Hedgehog signalling CS-WT (Breslow et al., 2018) 193 30 442 Centrosome/transition zone components Other proteins BBS7 FOPNL ATP5B EDC4 C2CD3 KIAA0753 BBS2/4/9 HSP90B1 CBY1 OFD1 CAPZB KIF7 CEP44 PPP2R3 CUL3 LONP1 CEP76 SLMAP DNAJC13 SETDB1 CEP90 TEDC1 CEP120 TTC8/BBS8 CEP295 TUBD1 FAM92A FOP Figure EV2. ª 2019 The Authors The EMBO Journal e101082 | 2019 EV3 The EMBO Journal Valentina Quarantotti et al Figure EV3. Localisation of centriolar satellite candidates in Jurkat cells. ▸ A Representative immunofluorescence images of Jurkat cells co-stained with antibodies against selected new CS candidates (green) and PCM1 (red). SSX2IP, a known CS component, is shown as positive control. The framed panel at the bottom illustrates the relative distributions of the centrosomal marker c-tubulin (red) and the CS protein PCM1 (green) in Jurkat cells. DNA is in blue. Images correspond to maximum intensity projections of confocal micrographs. High magnification images are included to aid visualisation of framed areas. Scale bars: 5 lm. B Representative immunofluorescence images of Jurkat cells mock-treated with DMSO or incubated with nocodazole (2 lg/ml) to depolymerise microtubules. Cells were co-stained with antibodies against PCM1 (green), c-tubulin (red) and a-tubulin (blue). Nocodazole reduces PCM1 signal in the pericentrosomal region. High magnification images are included to aid visualisation of framed areas and correspond to framed areas. Scale bar: 5 lm. C Knock-down efficiency of siRNAs assessed by qPCR. The relative expression of each candidate upon siRNA treatment was assessed by qPCR and shown relative to cells treated with a control siRNA. Each datapoint represents a biological replicate. Note that T3JAMsi1 enhances rather than reduces mRNA expression. Bar graphs show mean Æ SE. EV4 The EMBO Journal e101082 | 2019 ª 2019 The Authors Valentina Quarantotti et al The EMBO Journal A B γ-tubulin PCM1 PCM1, γ-tubulin, DNA DMSO Nocodazole PCM1 PCM1 CS candidate PCM1 CS candidate, PCM1, DNA SSX2IP γ-tubulin γ-tubulin BICD2 CEP63 α-tubulin α-tubulin CEP170 CEP215 -tubulin α CETN2 , -tubulin γ , CP110 PCM1 PCM1 SPICE1 PCM1 γ-tubulin WDR90 C BICD2 CCDC77 CEP170 HERC2 MYCBP2 T3JAM TRIM37 TRIM41 WDR37 3.0 2.5 2.0 1.5 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 i i i i i i2 s s 1 2 1 i1 i2 s 1 s 1 2 s l s si s s si si2 l si si1 ol o rol ol tr tr trol si 37 37 si3 tro 41 41 si m m m dr37 Bicd2Bicd2 si1 3jam i i Control si Con Con ContHerc2Herc2 si Con ControlT3jam siT ContrTr Trim37Tr ConTrimTri ControlW siWdr37 si2 Ccdc77Ccdc77 si1 si2 Cep170Cep170 si1 si2 MycBP2MycBP2 si si2 Figure EV3. ª 2019 The Authors The EMBO Journal e101082 | 2019 EV5 The EMBO Journal Valentina Quarantotti et al Figure EV4. SILAC-based quantitative MS analyses of whole-cell and centriolar satellite proteomes of WTPCM1-GFP and STIL-KOPCM1-GFP cell lines. ▸ A Reproducibility of SILAC-WCP experiments. B, C Reproducibility of SILAC-CS experiments. Scatterplots (in red) showing the reproducibility and quantile–quantile plots (in blue) showing similar ratio distribution between the replicates, for the GFP pull-downs (B) and the IgG CT pull-downs (C). Protein ratios of the reverse experiment have been inverted. D Venn diagram showing the overlap between the proteins down-regulated in SILAC-CS-STIL and the centrosome proteome dataset (Jakobsen et al, 2011). E Venn diagram showing the overlap between the proteins up-regulated in SILAC-CS-STIL and the centrosome proteome dataset (Jakobsen et al, 2011). Note that centrosomal proteins are under-represented among the up-regulated proteins. EV6 The EMBO Journal e101082 | 2019 ª 2019 The Authors Valentina Quarantotti et al The EMBO Journal A WCP B PCM1-GFP PCM1-GFP Log2 FC, WT /STIL KO -6 -2 2 6 -6 -2 2 6 -6 -2 2 6 SILAC-CS: GFP pull-downs PCM1-GFP PCM1-GFP 6 Log FC, STIL-KO /WT STIL(H)/ 2 WT(L) 2 (Forward) -6 -4 -2 0 2 4 -2 replicate #1 Q−Q plot Q−Q plot Q−Q plot Q−Q plot Q−Q plot STIL(L)/ -6 WT(H) STIL(H)/ (Forward) WT(L) replicate #1 Q−Q plot Q−Q plot (Forward) replicate #2 Q−Q plot Q−Q plot Q−Q plot Q−Q plot STIL(L)/ -6 -2 2 6 WT(H) STIL(H)/ (Forward) WT(L) replicate #2 Q−Q plot (Forward) -6 -4 -2 0 2 4 replicate #3 -2 2 6 Q−Q plot Q−Q plot Q−Q plot STIL(H)/ -6 WT(L) STIL(H)/ (Reverse) WT(L) replicate #1 (Forward) -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 replicate #4 Q−Q plot Q−Q plot -6 -2 2 6 STIL(L)/ WT(H) (Reverse) -2 2 6 C replicate #1 Q−Q plot -6 STIL(L)/ SILAC-CS: IgG pull-downs WT(H) Log FC, STIL-KOPCM1-GFP/WTPCM1-GFP (Reverse) 2 replicate #2 -6 -4 -2 0 2 4 -6 -2 2 6 -6 -2 2 6 -6 -2 2 6 -6 -2 2 6 STIL(L)/ WT(H) (Forward) -2 0 2 4 replicate #1 -4 D Q−Q plot Q−Q plot Proteins down in STIL Centrosome proteome STIL(L)/ (SILAC-CS) (Jakobsen et al., 2011) WT(H) (Forward) -4 -2 0 2 4 replicate #2 Q−Q plot -6 1829 136 STIL(H)/ WT(L) (Reverse) replicate #1 -4 -2 0 2 4 -6 -6 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 E Proteins up in STIL Centrosome proteome (SILAC-CS) (Jakobsen et al., 2011) 214 161 Figure EV4.
Recommended publications
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • Cytoplasmic E2f4 Forms Organizing Centres for Initiation of Centriole Amplification During Multiciliogenesis
    ARTICLE Received 13 Feb 2017 | Accepted 8 May 2017 | Published 4 Jul 2017 DOI: 10.1038/ncomms15857 OPEN Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis Munemasa Mori1, Renin Hazan2, Paul S. Danielian2, John E. Mahoney1,w, Huijun Li1, Jining Lu1, Emily S. Miller2, Xueliang Zhu3, Jacqueline A. Lees2 & Wellington V. Cardoso1 Abnormal development of multiciliated cells is a hallmark of a variety of human conditions associated with chronic airway diseases, hydrocephalus and infertility. Multiciliogenesis requires both activation of a specialized transcriptional program and assembly of cytoplasmic structures for large-scale centriole amplification that generates basal bodies. It remains unclear, however, what mechanism initiates formation of these multiprotein complexes in epithelial progenitors. Here we show that this is triggered by nucleocytoplasmic translocation of the transcription factor E2f4. After inducing a transcriptional program of centriole biogenesis, E2f4 forms apical cytoplasmic organizing centres for assembly and nucleation of deuterosomes. Using genetically altered mice and E2F4 mutant proteins we demonstrate that centriole amplification is crucially dependent on these organizing centres and that, without cytoplasmic E2f4, deuterosomes are not assembled, halting multiciliogenesis. Thus, E2f4 integrates nuclear and previously unsuspected cytoplasmic events of centriole amplification, providing new perspectives for the understanding of normal ciliogenesis, ciliopathies and cancer. 1 Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Medical Center, New York City, New York 10032, USA. 2 David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA. 3 State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Cep78 Is a New Centriolar Protein Involved in Plk4-Induced Centriole
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 2713-2718 doi:10.1242/jcs.184093 SHORT REPORT Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication Kathrin Brunk1,§, Mei Zhu1,*,§, Felix Bärenz1, Anne-Sophie Kratz1, Uta Haselmann-Weiss2, Claude Antony2,‡ and Ingrid Hoffmann1,¶ ABSTRACT 2006; Brito et al., 2012). Major components of the pathway in Centrioles are core components of centrosomes, the major human cells are the serine/threonine polo-like kinase 4 (Plk4), microtubule-organizing centers of animal cells, and act as basal Cep192, Cep152, Sas-6, STIL and CPAP (also known as CENPJ) bodies for cilia formation. Control of centriole number is therefore (Brito et al., 2012). In human cells, Plk4, Sas-6 and STIL localize to crucial for genome stability and embryogenesis. Centriole duplication the sites of procentriole formation and collaborate to induce requires the serine/threonine protein kinase Plk4. Here, we identify cartwheel assembly during daughter centriole formation. Plk4 is a Cep78 as a human centrosomal protein and a new interaction partner structurally divergent polo-like kinase family member as it harbors – of Plk4. Cep78 is mainly a centriolar protein that localizes to the three polo-boxes (PB1 PB3) whereas Plk1, Plk2 and Plk3 only centriolar wall. Furthermore, we find that Plk4 binds to Cep78 through have two polo-boxes, PB1 and PB2 (Slevin et al., 2012). its N-terminal domain but that Cep78 is not an in vitro Plk4 substrate. Few substrates of Plk4 have been described to date, including Cep78 colocalizes with Plk4 at centrioles and is required for STIL (Ohta et al., 2014; Dzhindzhev et al., 2014; Kratz et al., 2015; Plk4-induced centriole overduplication.
    [Show full text]
  • Centrosome Impairment Causes DNA Replication Stress Through MLK3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898684; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Centrosome impairment causes DNA replication stress through MLK3/MK2 signaling and R-loop formation Zainab Tayeh 1, Kim Stegmann 1, Antonia Kleeberg 1, Mascha Friedrich 1, Josephine Ann Mun Yee Choo 1, Bernd Wollnik 2, and Matthias Dobbelstein 1* 1) Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany 2) Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany *Lead Contact. Correspondence and requests for materials should be addressed to M. D. (e-mail: [email protected]; ORCID 0000-0001-5052-3967) Running title: Centrosome integrity supports DNA replication Key words: Centrosome, CEP152, CCP110, SASS6, CEP152, Polo-like kinase 4 (PLK4), DNA replication, DNA fiber assays, R-loops, MLK3, MK2 alias MAPKAPK2, Seckel syndrome, microcephaly. Highlights: • Centrosome defects cause replication stress independent of mitosis. • MLK3, p38 and MK2 (alias MAPKAPK2) are signalling between centrosome defects and DNA replication stress through R-loop formation. • Patient-derived cells with defective centrosomes display replication stress, whereas inhibition of MK2 restores their DNA replication fork progression and proliferation. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898684; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Centriole Overduplication Is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma
    Published OnlineFirst January 12, 2018; DOI: 10.1158/1541-7786.MCR-17-0197 Oncogenes and Tumor Suppressors Molecular Cancer Research Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma Ryan A. Denu1,2, Maria Shabbir3, Minakshi Nihal3, Chandra K. Singh3, B. Jack Longley3,4,5, Mark E. Burkard2,4, and Nihal Ahmad3,4,5 Abstract Centrosome amplification (CA) is common in cancer and can evaluated. PLK4 is significantly overexpressed in melanoma com- arise by centriole overduplication or by cell doubling events, pared with benign nevi and in a panel of human melanoma cell including the failure of cell division and cell–cell fusion. To assess lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL- the relative contributions of these two mechanisms, the number of 28) compared with normal human melanocytes. Interestingly, centrosomes with mature/mother centrioles was examined by although PLK4 expression did not correlate with CA in most cases, immunofluorescence in a tissue microarray of human melanomas treatment of melanoma cells with a selective small-molecule PLK4 and benign nevi (n ¼ 79 and 17, respectively). The centrosomal inhibitor (centrinone B) significantly decreased cell proliferation. protein 170 (CEP170) was used to identify centrosomes with The antiproliferative effects of centrinone B were also accompa- mature centrioles; this is expected to be present in most centro- nied by induction of apoptosis. somes with cell doubling, but on fewer centrosomes with over- duplication. Using this method, it was determined that the major- Implications: This study demonstrates that centriole overdupli- ity of CA in melanoma can be attributed to centriole overduplica- cation is the predominant mechanism leading to centrosome tion rather than cell doubling events.
    [Show full text]
  • Eutherian Adaptation from a TRAK-Like Protein, Conserved Gene Promoter Elements, and Localization in the Human Intestine Amanda L
    Lumsden et al. BMC Evolutionary Biology (2016) 16:214 DOI 10.1186/s12862-016-0780-3 RESEARCH ARTICLE Open Access Huntingtin-associated protein 1: Eutherian adaptation from a TRAK-like protein, conserved gene promoter elements, and localization in the human intestine Amanda L. Lumsden1*, Richard L. Young2,3, Nektaria Pezos2,3 and Damien J. Keating1,2* Abstract Background: Huntingtin-associated Protein 1 (HAP1) is expressed in neurons and endocrine cells, and is critical for postnatal survival in mice. HAP1 shares a conserved “HAP1_N” domain with TRAfficking Kinesin proteins TRAK1 and TRAK2 (vertebrate), Milton (Drosophila) and T27A3.1 (C. elegans). HAP1, TRAK1 and TRAK2 have a degree of common function, particularly regarding intracellular receptor trafficking. However, TRAK1, TRAK2 and Milton (which have a “Milt/TRAK” domain that is absent in human and rodent HAP1) differ in function to HAP1 in that they are mitochondrial transport proteins, while HAP1 has emerging roles in starvation response. We have investigated HAP1 function by examining its evolution, and upstream gene promoter sequences. We performed phylogenetic analyses of the HAP1_N domain family of proteins, incorporating HAP1 orthologues (identified by genomic synteny) from 5 vertebrate classes, and also searched the Dictyostelium proteome for a common ancestor. Computational analyses of mammalian HAP1 gene promoters were performed to identify phylogenetically conserved regulatory motifs. Results: We found that as recently as marsupials, HAP1 contained a Milt/TRAK domain and was more similar to TRAK1 and TRAK2 than to eutherian HAP1. The Milt/TRAK domain likely arose post multicellularity, as it was absent in the Dictyostelium proteome. It was lost from HAP1 in the eutherian lineage, and also from T27A3.1 in C.
    [Show full text]
  • The Transformation of the Centrosome Into the Basal Body: Similarities and Dissimilarities Between Somatic and Male Germ Cells and Their Relevance for Male Fertility
    cells Review The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility Constanza Tapia Contreras and Sigrid Hoyer-Fender * Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany; [email protected] * Correspondence: [email protected] Abstract: The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An Citation: Tapia Contreras, C.; articular structure is formed around the centriole pair known as the connecting piece, situated in the Hoyer-Fender, S. The Transformation neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, of the Centrosome into the Basal in short, HTCA.
    [Show full text]
  • PCM1 Is Necessary for Focal Ciliary Integrity and Is a Candidate for Severe Schizophrenia
    ARTICLE https://doi.org/10.1038/s41467-020-19637-5 OPEN PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia Tanner O. Monroe 1,2, Melanie E. Garrett3, Maria Kousi4, Ramona M. Rodriguiz5,6, Sungjin Moon7, Yushi Bai8, Steven C. Brodar8, Karen L. Soldano3, Jeremiah Savage9, Thomas F. Hansen10,11, Donna M. Muzny12,13, Richard A. Gibbs12,13, Lawrence Barak8, Patrick F. Sullivan14,15,16, Allison E. Ashley-Koch 3, ✉ Akira Sawa 17,18,19,20, William C. Wetsel 5,6,8,21, Thomas Werge 10,11,22,23 & Nicholas Katsanis 1,2 1234567890():,; The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia. 1 Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
    [Show full text]