Osmium Tetroxide and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Osmium Tetroxide and Its Applications Osmium Tetroxide and Its Applications By W. P. Griffith Department of Inorganic Chemistry, Imperial College, London Osmium tetroxide, OsO,, is the most im- (maximum permitted atmospheric level portant and most easily prepared compound 2 x 10-6 glm3). It attacks the eyes, causing of osmium. It has a number of specific blurring of vision and, in very severe cases, applications in organic chemistry and in temporary blindness, and it also attacks and biochemistry, and it is with these that this irritates the nose and throat linings and may article is chiefly concerned; it is also a useful exacerbate bronchial conditions. Fortunately source of osmium compounds. It is re- it has a characteristic, penetrating, rather markable in that it is one of the few volatile ozone-like smell and this, together with its oxides of a heavy metal and that although the irritant effects, makes accidents with it rare. osmium is octavalent (of all elements only In the event of OsO, vapour attacking the eyes osmium and ruthenium reach as high an or the skin the remedy is washing with copious oxidation state) it is a reasonably controllable quantities of water. Spilled OsO, may be oxidising agent. It is from this latter property reduced by dissolving it in alkali in 50 per cent that most of its applications derive. water-ethanol solution, and the non-volatile osmate salt may then be washed away. Discovery and Preparation The compound was discovered in 1S03 by Physical and Chemical Properties Smithson Tennant (1761-1815), and in the The properties of OsO, have been reviewed same year he isolated metallic osmium from by Griffith (3). The solid forms pale yellow it (I). Fusion with alkali of the black residue monoclinic crystals (M.P. 40.6”C, B.P. remaining after treatment of native platinum 121.2T,density 4.906). It is fairly soluble in with aqua regia followed by extraction and water (7.2 g/Ioo ml at 25°C) and extremely acidification of the melt gave soluble in inert organic solvents (e.g. “a pungent and peculiar smell . from the 350 g/Ioo ml. of carbon tetrachloride). It extrication of a very volatile metal oxide; and, exists in the gaseous, solid or solution state as as this smell is one of its most distinguishing discrete molecular tetrahedra (Os-0 distance characters, I should on that account incline to call this metal Osmium” (I) (oopq-smell, 1.717 A). The thermodynamic properties of odour). OsO, have been reviewed (4). Industrially, OsO, is made from crude In almost all of its chemical reactions, a platinum concentrates by oxidative acid number of which are summarised in the distillation and is then separated from ru- diagram, OsO, is reduced to compounds con- thenium tetroxide. In the laboratory it is best taining lower oxidation states. With ammonia, made by direct oxidation of osmium metal (2) however, the tetrahedral osmiamate ion or by the acid distillation with chlorate of [OsO,N]- is formed, which is isoelectronic almost any osmium compound. with OsO,. Toxicity Applications in Organic Chemistry The solid has an appreciable vapour pres- The valuable function of OsO, in the sure at room temperature and should be oxidation of olefins has been known and handled with care. The vapour is poisonous applied since 1913, and now constitutes one of Platinum Metals Rev., 1974, 18, (3), 94-96 94 the major industrial and laboratory uses of the The reagent may be used either alone in an compound, particularly for reactions of inert solvent, the resulting osmate (VI) ester steroids and sugars. The subject has been being decomposed by bisulphite or hydrogen well reviewed by Rylander (5) and also by sulphide (6,7), or, more commonly and Fieser and Fieser (6). It is used mainly for the economically, in the presence of an additional cis-hydroxylation of olefinic double bonds to oxidant such as chlorate, hydrogen peroxide give glycols, for which purpose it is the or periodate. These regenerate the OsO, smoothest and most efficient general reagent which is therefore functioning as a catalyst. known. It tends to react faster with strained There is little doubt that cyclic osmate (VI) olefins, particularly in the presence of esters are involved in these reactions, and a pyridine (7). Aromatic hydrocarbons are recent X-ray study showed that mono-esters hydroxylated only at the most reactive are dimeric (I) with a dioxo bridge, the osmium aromatic site (e.g. phenanthrene at the having square-based pyramidal coordination 9,10 position (8)). (8). The overall reaction is shown below: Platinum Metals Rev., 1974, 18, (3), 95 Examples of simple hydroxylations with attack of double bonds in unsaturated lipids OSO, are the production of glycerol from to give osmate (VI) esters. There is evidence ally1 alcohol and of ethylene glycol from that mono-esters of type (I) above may be ethylene. The compound has been used in involved, in which case the fixation property the synthesis of such species as cortisone, may possibly arise from the formation of progesterone, and of reserpine-type alkaloids, dioxo bridges (9). and also in the degradative investigation of There are still many questions to be natural products such as columbin (6). The answered, however-whether mono- or di- glycol cleavage properties of periodate may be esters are normally formed (12), and whether used together with the oxidising properties of in the dehydrated tissue the osmium is further OsO, to convert olefins to aldehydes (e.g. reduced to osmium (IV) and perhaps shifted trans-stilbene to benzaldehyde, cyclohexene away from the original double-bond sites. to adipaldehyde), to ketones or to epoxides The resolution of these problems is important (10). since OsO, is so extensively used, and it is necessary to know to what extent the fixed and In Biochemistry stained tissue is representative of the once The compound is extensively used (nor- living organism. mally in 2 per cent aqueous solution, often called “osmic acid”) for cell and tissue studies, Corrosion Prevention its unique fixation and staining properties Like some other heavy metal tetra-oxo having been recognised and used since 1861. species, osmium tetroxide in electrolytes It is used for both visible and electron has the property of passifying iron electrodes microscopy of biological materials, but now (13). the latter application is probably the more important. References I D. McDonald, Platinum Metals Rev., 1961, 5, The purpose of fixation is to “freeze” cells 146; Smithson Tennant, Phil. Trans., 1804, without destruction or disruption of their 94, 411 organisation or structure; staining is necessary 2 G. Brauer, Handbook of Preparative Chemis- try, Academic Press, New York, 1965, p. 1603 for the resolution of cellular structure by in- 3 W. P. Griffith, Chemistry of the Rarer creasing the apparent density of some parts of Platinum Metals, Interscience, New York, 1967; Quart. Rev., 1965, 19,254 the tissue only. OsO, is unique in that it both 4 B. N. Goldberg and L. G. Hepler, Chem. Rev., fixes and stains biological material. For the x968,68,229 electron microscopist its most important 5 P. N. Rylander, Engelhard Ind. Tech. Bull., 1968, 9, 90; F. R. Gunstone, Adv. Org. functions are the preservation of sub-cellular Chem., 1960, I, 103 ultrastructure and its ability to fix and stain 6 L. F. Fieser and M. Fieser, Reagents for membranes. For staining purposes it is often Organic Synthesis, Wiley, New York, 1967, PP 475,759 used with polar species such as uranyl or lead 7 R. Criegee, B. Marchand and H. Wannowius, ions. The normal method used is to pre-treat Ann., 1942, 550, 99 the tissue with aldehydes, then to treat it by 8 G. M. Badger, Qzturt. Rev., 1951,5,160 9 R. J. Collin, W. P. Griffith, F. Phillips and immersion in a dilute aqueous solution of A. C. Skapski, Biochim. Biophys. Acra, 1973, OsO, (or the tissue is exposed to OsO, vapour) 320, 745; J. Chem. Soc., Dalton Trans., 1974, I094 followed by washing, additional staining if I0 R. Pappo, D. S. Allen, R. U. Lemieux and required, dehydration with alcohol, em- W. S. Johnson, J. Org. Chem., 1956,z1,478 bedding in resin and cutting into thin sections I1 M. A. Hayat, Principles and Techniques of Electron Microscopy, Vol. I, van Nostrand, suitable for microscopy. I970 The mechanism of tissue fixation and I2 J. Riemersma, Biochim. Biophyx. Acta, 1968, 718; E. Korn,J. Cell Biol., 1967, staining by OsO, is far from clear, although it 152, D. 34, 627 is generally accepted that the first step is the 13 G. H. Cartledge, Corrosion, 1967,18,316t Platinum Metals Rev., 1974, 18, (3), 94 .
Recommended publications
  • Oxidation States of Ruthenium and Osmium COMPREHENSIVE COORDINATION CHEMISTRY II
    DOI: 10.1595/147106704X10801 Oxidation States of Ruthenium and Osmium COMPREHENSIVE COORDINATION CHEMISTRY II. FROM BIOLOGY TO NANOTECHNOLOGY Volume 5 TRANSITION METAL GROUPS 7 AND 8 EDITED BY E. C. CONSTABLE AND J. R. DILWORTH; EDITORS-IN-CHIEF, JON A. McCLEVERTY AND THOMAS J. MEYER, Elsevier, Amsterdam, 2003, 876 pages, ISBN 0-08-0443273 (Volume 5); ISBN 0-08-0437486 (Set), U.S.$ 5975, €6274 per Set Reviewed by C. F. J. Barnard* and S. C. Bennett Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.; *E-mail: [email protected] Volume 5 in the book set “Comprehensive nated by the chemistry of complexes containing Coordination Chemistry II” (CCCII) presents a the bipyridine (bpy) ligand. survey of important developments in the chemistry Many complex ligands designed to extend the of the transition metals of Groups 7 and 8: man- conjugation of the aromatic system or otherwise ganese, technetium, rhenium, iron, ruthenium (Ru) modify the electronic properties of the complex, and osmium (Os), published from 1982 to 2002. have been prepared. The complexes can be simple 2+ Volumes 6 and 9 in this 10 book set, covering mononuclear species, such as [Ru(bpy)3] , dinu- n+ work on the other platinum group metals have clear [(bpy)2Ru(µ-L)Ru(bpy)2] or polynuclear. been previously reviewed (1, 2). In Volume 5, the material for each element is organised by oxidation High Oxidation States state of the metal and also by the nature of the lig- The high oxidation states of ruthenium and ands involved, with additional sections covering osmium are areas that are generally only very light- special features of the coordination chemistry and ly covered by most chemistry reference books, applications of the complexes.
    [Show full text]
  • Sodium Periodate Solution (SP7469-G)
    Page: 1/9 Safety Data Sheet according to OSHA HCS (29CFR 1910.1200) and WHMIS 2015 Regulations Revision: July 09, 2020 1 Identification · Product identifier · Trade name: Sodium Periodate Solution · Product code: SP7469-G · Recommended use and restriction on use · Recommended use: Laboratory chemicals · Restrictions on use: No relevant information available. · Details of the supplier of the Safety Data Sheet · Manufacturer/Supplier: AquaPhoenix Scientific, Inc. 860 Gitts Run Road Hanover, PA 17331 USA Tel +1 (717)632-1291 Toll-Free: (866)632-1291 [email protected] · Distributor: AquaPhoenix Scientific 860 Gitts Run Road, Hanover, PA 17331 (717) 632-1291 · Emergency telephone number: ChemTel Inc. (800)255-3924 (North America) +1 (813)248-0585 (International) 2 Hazard(s) identification · Classification of the substance or mixture Skin Irrit. 2 H315 Causes skin irritation. Eye Irrit. 2A H319 Causes serious eye irritation. STOT RE 1 H372 Causes damage to the thyroid through prolonged or repeated exposure. · Label elements · GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). · Hazard pictograms: GHS07 GHS08 · Signal word: Danger · Hazard statements: H315 Causes skin irritation. H319 Causes serious eye irritation. H372 Causes damage to the thyroid through prolonged or repeated exposure. · Precautionary statements: P260 Do not breathe mist/vapors/spray. P264 Wash thoroughly after handling. (Cont'd. on page 2) 50.1.3 Page: 2/9 Safety Data Sheet according to OSHA HCS (29CFR 1910.1200) and WHMIS 2015 Regulations Revision: July 09, 2020 Trade name: Sodium Periodate Solution (Cont'd. of page 1) P270 Do not eat, drink or smoke when using this product.
    [Show full text]
  • Production of Dialdehyde Cellulose and Periodate Regeneration: Towards Feasible Oxidation Processes
    Production of Dialdehyde Cellulose and Periodate Regeneration: Towards feasible oxidation processes Produktion av dialdehydcellulosa och återgenerering av perjodat: Mot möjliga oxidationsprocesser Elisabeth Höglund Department of Engineering and Chemical Sciences Chemistry 30 hp Supervisors: Susanne Hansson, Stora Enso & Gunilla Carlsson, Karlstad University Examinator: Thomas Nilsson 2015-09-25 ABSTRACT Cellulose is an attractive raw material that has lately become more interesting thanks to its degradability and renewability and the environmental awareness of our society. With the intention to find new material properties and applications, studies on cellulose derivatization have increased. Dialdehyde cellulose (DAC) is a derivative that is produced by selective cleavage of the C2-C3 bond in an anhydroglucose unit in the cellulose chain, utilizing sodium periodate (NaIO4) that works as a strong oxidant. At a fixed temperature, the reaction time as well as the amount of added periodate affect the resulting aldehyde content. DAC has shown to have promising properties, and by disintegrating the dialdehyde fibers into fibrils, thin films with extraordinary oxygen barrier at high humidity can be achieved. Normally, barrier properties of polysccharide films deteriorate at higher humidity due to their hygroscopic character. This DAC barrier could therefore be a potential environmentally-friendly replacement for aluminum which is utilized in many food packages today. The aim of this study was to investigate the possibilities to produce dialdehyde cellulose at an industrial level, where the regeneration of consumed periodate plays a significant role to obtain a feasible process. A screening of the periodate oxidation of cellulose containing seven experiments was conducted by employing the program MODDE for experimental design.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • The Periodic Table of Elements
    The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,496,778 Myers Et Al
    United States Patent (19) 11 Patent Number: 4,496,778 Myers et al. (45) Date of Patent: Jan. 29, 1985 (54) PROCESS FOR THE HYDROXYLATION OF 56 References Cited OLEFINS USING MOLECULAR OXYGEN, U.S. PATENT DOCUMENTS ANOSMIUM CONTAINING CATALYST, A COPPER CO-CATALYST, AND AN 2,773, 101 12/1956 Smith et al. ......................... 568/860 AROMATIC AMINE BASED PROMOTER 3,317,592 5/1967 Maclean et al. ... 568/860 3,337,635 8/1967 Norton et al. ....... 568/860 75 Inventors: Richard S. Myers, Fairlawn; Robert 4,390,739 6/1983 Michaelson et al. .... ..., 568/860 C. Michaelson, Waldwick; Richard FOREIGN PATENT DOCUMENTS G. Austin, Ridgewood, all of N.J. 32522 8/1974 Japan ................................... 568/860 73) Assignee: Exxon Research & Engineering Co., Primary Examiner-J. E. Evans Florham Park, N.J. Attorney, Agent, or Firm-Robert A. Maggio 21 Appl. No.: 538,190 57 ABSTRACT A process directed to the hydroxylation of olefins by 22 Filed: Oct. 3, 1983 reacting said olefins in the presence of oxygen, water, and a catalyst composition comprising (i) a catalytically 51 Int. Cl. ...................... C07C 29/04; CO7C 31/18; active osmium containing compound, (ii) a Co-catalyst C07C 31/22; CO7C 31/42 I comprising a copper containing compound such as 52 U.S.C. ................................. 568/860; 260/.397.2; CuBr2, and (iii) a Co-catalyst II capable of increasing 560/186; 562/587; 568/811; 568/821; 568/833; the rate and/or selectivity of the hydroxylation reac 568/838; 568/847 tion, such as pyridine is disclosed. 58 Field of Search ..............
    [Show full text]
  • Precipitation of Solid Transmutation Elements in Irradiated Tungsten Alloys
    Materials Transactions, Vol. 49, No. 10 (2008) pp. 2259 to 2264 #2008 The Japan Institute of Metals Precipitation of Solid Transmutation Elements in Irradiated Tungsten Alloys Takashi Tanno1;*1, Akira Hasegawa1, Mitsuhiro Fujiwara1, Jian-Chao He1;*1, Shuhei Nogami1, Manabu Satou1, Toetsu Shishido2 and Katsunori Abe1;*2 1Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan 2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan Tungsten-based model alloys were fabricated to simulate compositional changes by neutron irradiation, performed in the JOYO fast test reactor. The irradiation damage range was 0.17–1.54 dpa and irradiation temperatures were 400, 500 and 750C. After irradiation, microstructural observations and electrical resistivity measurements were carried out. A number of precipitates were observed after 1.54 dpa irradiation. Rhenium and osmium were precipitated by irradiation, which suppressed the formation of dislocation loops and voids. Structures induced by irradiation were not observed so much after 0.17 dpa irradiation. Electrical resistivity measurements showed that the effects of osmium on the electrical resistivity, related to impurity solution content, were larger than that of rhenium. Measurements of electrical resistivity of ternary alloys showed that the precipitation behavior was similar to that in binary alloys. [doi:10.2320/matertrans.MAW200821] (Received April 23, 2008; Accepted August 8, 2008; Published September 18,
    [Show full text]
  • The Separation and Determination of Osmium and Ruthenium
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 The epS aration and Determination of Osmium and Ruthenium. Harry Edward Moseley Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Moseley, Harry Edward, "The eS paration and Determination of Osmium and Ruthenium." (1969). LSU Historical Dissertations and Theses. 1559. https://digitalcommons.lsu.edu/gradschool_disstheses/1559 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. ThU dissertation has been 69-17,123 microfilmsd exactly as received MOSELEY, Harry Edward, 1929- THE SEPARATION AND DETERMINATION OF OSMIUM AND RUTHENIUM. Louisiana State University and Agricultural and Mechanical College, PhJ>., 1969 Chemistry, analytical University Microfilms, Inc., Ann Arbor, Michigan THE SEPARATION AND DETERMINATION OF OSMIUM AND RUTHENIUM A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry Harry Edward Moseley B.S., Lpuisiana State University, 1951 M.S., Louisiana State University, 1952 J anuary, 1969 ACKNOWLEDGMENTS Thanks are due to Dr. Eugene W. Berg under whose direction this work was performed, to Dr. A. D. Shendrikar for his help in the tracer studies, and to Mr. J. H. R. Streiffer for his help in writing the com­ puter program.
    [Show full text]
  • PATENT SPECIFICATION (11) 1 564 366 to (21) Application No
    PATENT SPECIFICATION (11) 1 564 366 TO (21) Application No. 3795/77 (22) Filed 31 Jan. 1977 CO (31) Convention Application No. 661572 OO (32) Filed 26 Feb. 1976 in (33) United States of America (US) CD (44) Complete Specification published 10 April 1980 M5 (51) INT CL3 B01D 53/02 53/14 53/34 (52) Index at acceptance B1L 102 205 214 302 305 309 AF CIA SI86 S18Y S191 S19Y S420 S44Y S450 S451 S46Y S492 S493 SB G6R 1A10 (54) SALTS OF THE IODINE OXYACIDS IN THE IMPREGNATION OF ADSORBENT CHARCOAL FOR TRAPPING RADIOACTIVE METHYLIODIDE (71) We, UNITED STATES DEPARTMENT OF ENERGY, formerly United States Energy Research and Development Administration, Washington, District of Columbia 20545, United States of America, a duly constituted agency of the Government of the United States of America established by the Energy Reorganization 5 Act of 1974 (Public Law 93-438), do hereby declare the invention, for which we 5 pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in and by the following statement:— It is essential in nuclear power reactor operations to remove the radioiodine fission-product and the organic derivatives that are present in the reactor air cleaning 10 systems. This is done by passing the air stream through filters containing adsorbent 10 charcoal which is suitably impregnated with compounds capable of removing both elementary iodine and the organic iodide. The charcoal must remain at high efficiency during its long service time, often when confronted with adverse contaminants in the air.
    [Show full text]
  • Potential Biocides: Iodine-Producing Pyrotechnics Full Paper
    Full Paper 1 DOI: 10.1002/prep.201700037 2 3 4 Potential Biocides: Iodine-Producing Pyrotechnics 5 Jimmie C. Oxley,*[a] James L. Smith,[a] Matthew M. Porter,[a] Maxwell J. Yekel,[a] and Jeffrey A. Canaria[a] 6 7 8 9 Abstract: Currently there is a need for specialized py- measured with bomb calorimetry and extraction and analy- 10 rotechnic materials to combat the threat of biological sis of I2 by UV-Vis. Of the mixtures analyzed, calcium iodate 11 weapons. Materials have been characterized based on their and aluminum was found to be the highest producer of I2. 12 potential to produce heat and molecular iodine gas (I2)to The heat output of this mixture and others can be tuned by 13 kill spore-forming bacteria (e.g. anthrax). One formulation, adding more fuel, with the cost of some iodine. Products of 14 already proven to kill anthrax simulants, is diiodine pent- combustion were analyzed by thermal analysis (SDT), XPS, 15 oxide with aluminum; however, it suffers from poor stability XRD, and LC/MS. Evidence for various metal iodides and 16 and storage problems. The heat and iodine gas output from metal oxides was collected with these methods. 17 this mixture and candidate replacement mixtures were 18 Keywords: Keywords missing!!! 19 20 21 22 1 Introduction The pyrotechnic mixtures were mixed as dry loose pow- 23 ders using a Resodyne Lab Ram Acoustic Mixer (acceleration 24 Previously we examined a series of oxidizers and fuels to 35–40 G). Heat released from the ignition of the pyrotechnic 25 determine their potential as explosive threats [1].
    [Show full text]
  • Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells †
    toxics Article Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells † Anna Mittag 1,* , Christian Hoera 2, Alexander Kämpfe 2 , Martin Westermann 3, Jochen Kuckelkorn 4, Thomas Schneider 1 and Michael Glei 1 1 Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; [email protected] (T.S.); [email protected] (M.G.) 2 German Environment Agency, Swimming Pool Water, Chemical Analytics, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; [email protected] (C.H.); [email protected] (A.K.) 3 Electron Microscopy Centre, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743 Jena, Germany; [email protected] 4 German Environment Agency, Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; [email protected] * Correspondence: [email protected] † In respectful memory of Dr. Tamara Grummt. Abstract: Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Citation: Mittag, A.; Hoera, C.; Kämpfe, A.; Westermann, M.; Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of Kuckelkorn, J.; Schneider, T.; Glei, M.
    [Show full text]
  • A Study of the Periodic Acid Oxidation of Cellulose Acetates of Low Acetyl
    o A STUDY OF THE PERIODIC ACID OXIDATION OF CELLULOSE ACETATES OF LOW ACETYL CONTENT By Franklin Willard Herrick A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1950 ACOOTIBDGMENT Grateful recognition is given to Professor Bruce B. Hartsuch for his helpful guidance and inspiration throughout the course of this investigation. ********** ******** ****** **** ** * TABLE OF CONTENTS Page I INTRODUCTION.................................... ........ 1 The Structure of Cellulose. ..................... 1 The Present Problem.................................... 2 II GENERAL AMD HISTORICAL................................... 3 CELLULOSE ACETATE........................................ 3 PERIODATE OXIDATION OF CELLULOSE......................... 10 DISTRIBUTION OF HYDROXYL GROUPS IN CELLULOSE ACETATES.... 12 III EXPERIMENTAL............................................. 15 PREPARATION OF CELLULOSE ACETATE........................ 15 Materials.................................. .. ..... 15 Preparation of Standard Cellulose...................... 15 Preparation of Cellulose Acetates of Low Acetyl Content 16 Conditioning and Cutting of Standard Cellulose and Cellulose Acetate.................... 19 The Weighing of Linters ........................ 20 Analysis for Percentage of Combined Acetic Acid........ 21 Tabulation of Analyses of Cellulose Acetate Preparations 23 Calculation of the Degree
    [Show full text]