Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer International Journal of Molecular Sciences Review Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer Guido Keijzers 1,* , Daniela Bakula 1, Michael Angelo Petr 1,2, Nils Gedsig Kirkelund Madsen 1, Amanuel Teklu 1, Garik Mkrtchyan 1, Brenna Osborne 1 and Morten Scheibye-Knudsen 1 1 Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark; [email protected] (D.B.); [email protected] (M.A.P.); [email protected] (N.G.K.M.); [email protected] (A.T.); [email protected] (G.M.); [email protected] (B.O.); [email protected] (M.S.-K.) 2 Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA * Correspondence: [email protected]; Tel.: +45-29-17-65-32 Received: 20 November 2018; Accepted: 19 December 2018; Published: 25 December 2018 Abstract: Human exonuclease 1 (EXO1), a 50!30 exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer. Keywords: DNA repair; double strand break repair; exonuclease 1; EXO1; mismatch repair; MMR; NER; nucleotide excision repair; strand displacements; TLS; translesion DNA synthesis 1. Introduction Human exonuclease 1 (EXO1) contributes to checkpoint progression and to several DNA repair pathways involved in reducing DNA replication stress, for example, in mismatch repair (MMR), translesion DNA synthesis (TLS), nucleotide excision repair (NER), double-strand break repair (DSBR), and checkpoint activation to restart stalled DNA forks [1–6]. The multifarious and crucial roles of EXO1 in these DNA repair pathways are summarized in Figure1. EXO1 is a member of the Rad2/XPG family of nucleases [7], and contains an active domain, located at the N-terminal region of the protein (Figure2). The EXO1 transcript has 5 0!30 exonuclease activity, as well as 50 structure specific DNA endonuclease activity and 50!30 RNase H activity [7,8]. EXO1 has a high affinity for processing double stranded DNA (dsDNA), DNA nicks, gaps, and DNA fork structures, and is involved in resolving double Holliday junctions [9–12]. During DNA replication in the S-phase of the cell cycle, a polymerase can incorporate a mismatched DNA base or encounter secondary DNA structures, which can stall the replication fork and lead to replication stress. The collapse of a replication fork can have severe consequences, and failure to restart a stalled fork may lead to double-strand breaks, chromosomal rearrangement, cell-cycle arrest, cell death, or malignant transformation [13,14]. The contribution of EXO1 in the safeguarding stability of the genome during DNA replicative and post-replicative processes is well-established. EXO1 activity contributes to several DNA repair processes; however, it is not clear if the absence or malfunction of EXO1 can contribute to cancer Int. J. Mol. Sci. 2019, 20, 74; doi:10.3390/ijms20010074 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 74 2 of 15 development. We will herein examine the putative wider roles of EXO1 as a guardian of our genome Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 15 Int.and J. investigateMol. Sci. 2019, its20, possiblex FOR PEER role REVIEW in cancer progression and initiation. 2 of 15 Figure 1. Human EXO1 participates in both replicative and post-replicative processes. In the Figure 1. HumanHuman EXO1 EXO1 participates participates in both replicativereplicative andand post-replicativepost-replicative processes.processes. In the replicative process, EXO1 contributes to DNA replication by assisting in the removal of mismatches, replicative process, EXO1 contributes to to DNA DNA replic replicationation by by assisting assisting in in the the removal removal of of mismatches, mismatches, bypassing the lesion using translesion synthesis, or by assisting with nucleotide excision repair by bypassing the lesion using translesion synthesis, or by assisting with nucleotide excision repair by activating the NER repair pathway. EXO1 also has a role in DNA resection during the process of activating the NER repair pathway. EXO1 EXO1 also also ha hass a a role in DNA resection during the process of homologous recombination. homologous recombination. FigureFigure 2. 2. InteractionInteraction domains domains in EXO1. in EXO1. Schematic Schematic overview overview of the of relevant the relevant interaction interaction domains domains in the Figure 2. Interaction domains in EXO1. Schematic overview of the relevant interaction domains in the humanin the humanEXO1 protein, EXO1 protein, denoting denoting interaction interaction domains domains with mismatch with mismatch repair proteins repair proteinsMSH3, MLH1, MSH3, human EXO1 protein, denoting interaction domains with mismatch repair proteins MSH3, MLH1, MSH2,MLH1, MSH2,and other and significant other significant interaction interaction regions, regions, including including with with PARP1, PARP1, PCNA, PCNA, and and the the nuclear nuclear MSH2, and other significant interaction regions, including with PARP1, PCNA, and the nuclear localizationlocalization signal signal (NLS). (NLS). localization signal (NLS). 2.2. DNA DNA Replication Replication 2. DNA Replication EnzymesEnzymes able able to to metabolize metabolize DNA DNA are are required required for for modulating modulating DNA DNA replication. replication. EXO1 EXO1 is Enzymes able to metabolize DNA are required for modulating DNA replication. EXO1 is intricatelyis intricately involved involved in this in thisprocess process both bothas an as enzyme an enzyme involved involved in replication in replication and in andDNA in repair DNA intricately involved in this process both as an enzyme involved in replication and in DNA repair pathwaysrepair pathways such as suchhomologous as homologous recombination, recombination, but it is also but an it isessential also an enzyme essential in enzymethe replication in the pathways such as homologous recombination, but it is also an essential enzyme in the replication process,replication such process, as DNA such strand as DNA displacement. strand displacement. Strand displacement Strand displacement describes the describes removal the of removal single process, such as DNA strand displacement. Strand displacement describes the removal of single strandedof single RNA stranded or DNA RNA from or DNA an RNA:DNA from an RNA:DNA or DNA:DNA or DNA:DNA duplex, a duplex,process arequired process for required multiple for stranded RNA or DNA from an RNA:DNA or DNA:DNA duplex, a process required for multiple essentialmultiple cellular essential processes, cellular processes,such as DNA such replicat as DNAion replication and DNA andrepair. DNA Accordingly, repair. Accordingly, flap structure- flap essential cellular processes, such as DNA replication and DNA repair. Accordingly, flap structure- specificstructure-specific endonuclease endonuclease 1 (FEN1), EXO1, 1 (FEN1), and polymerase EXO1, and polymeraseδ are the mainδ are factors the mainin primer factors removal in primer and specific endonuclease 1 (FEN1), EXO1, and polymerase δ are the main factors in primer removal and Okazakiremoval andfragment Okazaki maturation fragment at maturation the lagging at thestrand lagging in the strand process in the of process strand of displacement strand displacement during Okazaki fragment maturation at the lagging strand in the process of strand displacement during replicationduring replication [8,15–19]. [8, 15In– yeast,19]. In EXO1 yeast, can EXO1 substitu can substitutete for RAD27 for RAD27 (FEN1 (FEN1is the human is the human homolog) homolog) in RNA in replication [8,15–19]. In yeast, EXO1 can substitute for RAD27 (FEN1 is the human homolog) in RNA primer removal [11]. Indeed, in vitro assays suggest that 5’ flaps (< 5 nt) generated by polymerase δ primer removal [11]. Indeed, in vitro assays suggest that 5’ flaps (< 5 nt) generated by polymerase δ during replication are efficiently removed by FEN1 or EXO1 [9,11,15,16]. The 3’-exonuclease activity during replication are efficiently removed by FEN1 or EXO1 [9,11,15,16]. The 3’-exonuclease activity of polymerase δ avoids excessive strand displacement [19]. Deletion of POL32 (third subunit of of polymerase δ avoids excessive strand displacement [19]. Deletion of POL32 (third subunit of polymerase δ) can suppress the lethality of growth defects of RAD27 and polymerase δ D520V polymerase δ) can suppress the lethality of growth defects of RAD27 and polymerase δ D520V Int. J. Mol. Sci. 2019, 20, 74 3 of 15 RNA primer removal [11]. Indeed, in vitro assays suggest that 5’ flaps (<5 nt) generated by polymerase δ during replication are efficiently removed by FEN1 or EXO1 [9,11,15,16]. The 3’-exonuclease activity of polymerase δ avoids excessive strand displacement [19]. Deletion of POL32 (third subunit of polymerase δ) can suppress the lethality of growth defects of RAD27 and polymerase δ D520V mutants in yeast (defective for RAD27 and the 3’!5’ exonuclease of polymerase δ)[20]. In support of this
Recommended publications
  • Variant Requirements for DNA Repair Proteins in Cancer Cell Lines That Use
    Variant requirements for DNA repair proteins in cancer cell lines that use alternative lengthening of telomere mechanisms of elongation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alaina Rae Martinez Biomedical Sciences Graduate Program The Ohio State University 2016 Dissertation Committee: Dr. Jeffrey D. Parvin, Advisor Dr. Joanna Groden Dr. Amanda E. Toland Dr. Kay F. Huebner Copyright by Alaina Rae Martinez 2016 Abstract The human genome relies on DNA repair proteins and the telomere to maintain genome stability. Genome instability is recognized as a hallmark of cancer, as is limitless replicative capacity. Cancer cells require telomere maintenance to enable this uncontrolled growth. Most often telomerase is activated, although a subset of human cancers depend on recombination-based mechanisms known as Alternative Lengthening of Telomeres (ALT). ALT depends invariably on recombination and its associated DNA repair proteins to extend telomeres. This study tested the hypothesis that the requirement for those requisite recombination proteins include other types of DNA repair proteins. These functions were tested in ALT cell lines using C-circle abundance as a marker of ALT. The requirement for homologous recombination proteins and other DNA repair proteins varied between ALT cell lines compared. Several proteins essential for homologous recombination were dispensable for C-circle production in some ALT cell lines, while proteins grouped into excision DNA repair processes were required for C- circle production. The MSH2 mismatch repair protein was required for telomere recombination by intertelomeric exchange. In sum, our study suggests that ALT proceeds by multiple mechanisms that differ between human cancer cell lines and that some of these depend on DNA repair proteins not associated with homologous recombination pathways.
    [Show full text]
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
    Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre
    [Show full text]
  • Reconstitution of Long and Short Patch Mismatch Repair Reactions Using Saccharomyces Cerevisiae Proteins
    Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins Nikki Bowena, Catherine E. Smitha, Anjana Srivatsana, Smaranda Willcoxb,c, Jack D. Griffithb,c, and Richard D. Kolodnera,d,e,f,g,1 aLudwig Institute for Cancer Research, Departments of dMedicine and eCellular and Molecular Medicine, fMoores-University of California, San Diego Cancer Center, and gInstitute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093; and bLineberger Cancer Center and cDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Contributed by Richard D. Kolodner, October 8, 2013 (sent for review September 9, 2013) A problem in understanding eukaryotic DNA mismatch repair In eukaryotic MMR, mispairs are bound by MutS homolog 2 (MMR) mechanisms is linking insights into MMR mechanisms from (Msh2)–MutS homolog 6 (Msh6) and Msh2–MutS homolog 3 genetics and cell-biology studies with those from biochemical (Msh3), two partially redundant complexes of MutS-related pro- studies of MMR proteins and reconstituted MMR reactions. This teins (3, 4, 18, 19). These complexes recruit a MutL-related type of analysis has proven difficult because reconstitution ap- complex, called MutL homoloh 1 (Mlh1)–postmeiotic segrega- proaches have been most successful for human MMR whereas tion 1 (Pms1) in S. cerevisiae and Mlh1–postmeiotic segregation – – analysis of MMR in vivo has been most advanced in the yeast 2 (Pms2) in human and mouse (3, 4, 20 23). The Mlh1 Pms1/ Saccharomyces cerevisiae. Here, we describe the reconstitution of Pms2 complex has an endonuclease activity suggested to play MMR reactions using purified S.
    [Show full text]
  • Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
    Mechanisms in E. coli and Human Mismatch Repair Nobel Lecture, December 8, 2015 by Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. he idea that mismatched base pairs occur in cells and that such lesions trig- T ger their own repair was suggested 50 years ago by Robin Holliday in the context of genetic recombination [1]. Breakage and rejoining of DNA helices was known to occur during this process [2], with precision of rejoining attributed to formation of a heteroduplex joint, a region of helix where the two strands are derived from the diferent recombining partners. Holliday pointed out that if this heteroduplex region should span a genetic diference between the two DNAs, then it will contain one or more mismatched base pairs. He invoked processing of such mismatches to explain the recombination-associated phenomenon of gene conversion [1], noting that “If there are enzymes which can repair points of damage in DNA, it would seem possible that the same enzymes could recognize the abnormality of base pairing, and by exchange reactions rectify this.” Direct evidence that mismatches provoke a repair reaction was provided by bacterial transformation experiments [3–5], and our interest in this efect was prompted by the Escherichia coli (E. coli) work done in Matt Meselson’s lab at Harvard. Using artifcially constructed heteroduplex DNAs containing multiple mismatched base pairs, Wagner and Meselson [6] demonstrated that mismatches elicit a repair reaction upon introduction into the E. coli cell. Tey also showed that closely spaced mismatches, mismatches separated by a 1000 base pairs or so, are usually repaired on the same DNA strand.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • The Role and Mechanisms of Action of Micrornas in Cancer Drug Resistance Wengong Si1,2,3, Jiaying Shen4, Huilin Zheng1,5 and Weimin Fan1,6*
    Si et al. Clinical Epigenetics (2019) 11:25 https://doi.org/10.1186/s13148-018-0587-8 REVIEW Open Access The role and mechanisms of action of microRNAs in cancer drug resistance Wengong Si1,2,3, Jiaying Shen4, Huilin Zheng1,5 and Weimin Fan1,6* Abstract MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
    [Show full text]
  • Phosphate Steering by Flap Endonuclease 1 Promotes 50-flap Specificity and Incision to Prevent Genome Instability
    ARTICLE Received 18 Jan 2017 | Accepted 5 May 2017 | Published 27 Jun 2017 DOI: 10.1038/ncomms15855 OPEN Phosphate steering by Flap Endonuclease 1 promotes 50-flap specificity and incision to prevent genome instability Susan E. Tsutakawa1,*, Mark J. Thompson2,*, Andrew S. Arvai3,*, Alexander J. Neil4,*, Steven J. Shaw2, Sana I. Algasaier2, Jane C. Kim4, L. David Finger2, Emma Jardine2, Victoria J.B. Gotham2, Altaf H. Sarker5, Mai Z. Her1, Fahad Rashid6, Samir M. Hamdan6, Sergei M. Mirkin4, Jane A. Grasby2 & John A. Tainer1,7 DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 50-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 50-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 50polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 50-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 50-flap specificity and catalysis, preventing genomic instability. 1 Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
    [Show full text]
  • The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency
    Published OnlineFirst March 9, 2010; DOI: 10.1158/1541-7786.MCR-09-0534 Molecular DNA Damage and Cellular Stress Responses Cancer Research The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency Kenza Lahkim Bennani-Belhaj1,2, Sébastien Rouzeau1,2, Géraldine Buhagiar-Labarchède1,2, Pauline Chabosseau1,2, Rosine Onclercq-Delic1,2, Emilie Bayart1, Fabrice Cordelières3,4, Jérôme Couturier5,6, and Mounira Amor-Guéret1,2 Abstract Little is known about the functional interaction between the Bloom's syndrome protein (BLM) and the re- combinase RAD51 within cells. Using RNA interference technology, we provide the first demonstration that RAD51 acts upstream from BLM to prevent anaphase bridge formation. RAD51 downregulation was associated with an increase in the frequency of BLM-positive anaphase bridges, but not of BLM-associated ultrafine bridges. Time-lapse live microscopy analysis of anaphase bridge cells revealed that BLM promoted cell survival in the absence of Rad51. Our results directly implicate BLM in limiting the lethality associated with RAD51 deficiency through the processing of anaphase bridges resulting from the RAD51 defect. These findings provide insight into the molecular basis of some cancers possibly associated with variants of the RAD51 gene family. Mol Cancer Res; 8(3); 385–94. ©2010 AACR. Introduction cently, SUMOylation of BLM has been shown to regulate its association with RAD51 and its function in HR-medi- Bloom's syndrome displays one of the strongest known ated repair of damaged replication forks (13). In several correlations between chromosomal instability and a high models, it has been proposed that BLM restarts replication risk of cancer at an early age.
    [Show full text]
  • A Dissertation Entitled the Role of Base Excision Repair And
    A Dissertation Entitled The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links. by Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science Dr. Stephan M. Patrick, Committee Chair Dr. Kandace Williams, Committee Member Dr. William Maltese, Committee Member Dr. Manohar Ratnam, Committee Member Dr. David Giovannucci, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2014 Copyright 2014, Akshada Sawant This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links By Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science The University of Toledo August 2014 Cisplatin is a well-known anticancer agent that forms a part of many combination chemotherapeutic treatments used against a variety of human cancers. Despite successful treatment, the development of resistance is the major limitation of the cisplatin based therapy. Base excision repair modulates cisplatin cytotoxicity. Moreover, mismatch repair deficiency gives rise to cisplatin resistance and leads to poor prognosis of the disease. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Our studies showed that these mismatches lead to the activation and the recruitment of mismatch repair proteins.
    [Show full text]
  • Principles and Applications of Rabbit Models for Atherosclerosis Research
    J Atheroscler Thromb, 2018; 25: 213-220. http://doi.org/10.5551/jat.RV17018 Review Principles and Applications of Rabbit Models for Atherosclerosis Research Jianglin Fan1, Yajie Chen1, Haizhao Yan1, Manabu Niimi1, Yanli Wang2 and Jingyan Liang3 1Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan 2Department of Pathology, Xi’an Medical University, Xi’an, China 3Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China Rabbits are one of the most used experimental animals for biomedical research, particularly as a bio- reactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large ani- mals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diag- nostic methods for patients. The principle of using rabbits rather than other animals as an experi- mental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future.
    [Show full text]