Electrolyte Solutions: Thermodynamics, Crystallization, Separation Methods
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Electrolyte Solutions: Thermodynamics, Crystallization, Separation methods Thomsen, Kaj Link to article, DOI: 10.11581/dtu:00000073 Publication date: 2009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Thomsen, K. (2009). Electrolyte Solutions: Thermodynamics, Crystallization, Separation methods. https://doi.org/10.11581/dtu:00000073 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Electrolyte Solutions: Thermodynamics, Crystallization, Separation methods 2009 Kaj Thomsen, Associate Professor, DTU Chemical Engineering, Technical University of Denmark [email protected] 1 List of contents 1 INTRODUCTION ................................................................................................................. 5 2 CONCENTRATION UNITS ............................................................................................... 6 3 IDEAL SOLUTIONS ............................................................................................................ 9 3.1 DEFINITION 9 COLLIGATIVE PROPERTIES 13 4 CHEMICAL POTENTIAL AND ACTIVITY COEFFICIENTS .................................. 16 4.1 CHEMICAL POTENTIAL 16 4.2 EXCESS CHEMICAL POTENTIALS FOR REAL SOLUTIONS 16 4.3 THE RATIONAL, UNSYMMETRICAL ACTIVITY COEFFICIENT 17 4.4 THE MOLALITY ACTIVITY COEFFICIENT 18 4.5 THE MOLARITY ACTIVITY COEFFICIENT 19 4.6 THE ACTIVITY OF SPECIES 20 4.7 CHEMICAL POTENTIAL OF A SALT 20 5 MEASUREMENT OF CHEMICAL POTENTIALS IN SALT SOLUTIONS ............. 23 5.1 MEASUREMENT OF THE CHEMICAL POTENTIALS OF IONS 23 5.2 THE NERNST EQUATION 24 5.3 THE HARNED CELL 25 5.4 MEASUREMENT OF SOLVENT ACTIVITY 27 5.4.1 FREEZING POINT DEPRESSION AND BOILING POINT ELEVATION MEASUREMENTS ................ 27 5.4.2 VAPOR PRESSURE METHODS ................................................................................................. 28 5.4.3 ISOPIESTIC MEASUREMENTS .................................................................................................. 29 5.5 OSMOTIC COEFFICIENT 30 5.5.1 THE VALUE OF THE OSMOTIC COEFFICIENT AT INFINITE DILUTION ...................................... 31 5.6 MEAN ACTIVITY COEFFICIENT FROM OSMOTIC COEFFICIENT 32 5.7 OSMOTIC PRESSURE 33 6 THERMODYNAMIC MODELS FOR ELECTROLYTE SOLUTIONS ..................... 35 6.1 ELECTROSTATIC INTERACTIONS 35 6.1.1 DEBYE-HÜCKEL THEORY ...................................................................................................... 35 6.1.2 DEBYE-HÜCKEL EXTENDED LAW ......................................................................................... 37 6.1.3 DEBYE-HÜCKEL LIMITING LAW ............................................................................................ 39 6.1.4 THE HÜCKEL EQUATION ....................................................................................................... 40 6.1.5 THE BORN EQUATION ............................................................................................................ 42 6.1.6 THE MEAN SPHERICAL APPROXIMATION ............................................................................... 44 6.2 EMPIRICAL MODELS FOR INTERMEDIATE/SHORT RANGE INTERACTIONS 46 6.2.1 THE MEISSNER CORRELATION .............................................................................................. 46 6.2.2 BROMLEY’S METHOD ............................................................................................................ 48 6.2.3 THE PITZER METHOD ............................................................................................................. 50 2 6.3 INTERMEDIATE/SHORT RANGE INTERACTIONS FROM LOCAL COMPOSITION MODELS 54 6.3.1 THE EXTENDED UNIQUAC MODEL ..................................................................................... 54 6.3.2 THE ELECTROLYTE NRTL MODEL ........................................................................................ 57 6.4 INTERMEDIATE/SHORT RANGE INTERACTIONS FROM EQUATIONS OF STATE 58 6.4.1 FUGACITY COEFFICIENTS AND ACTIVITY COEFFICIENTS ....................................................... 58 6.4.2 THE FÜRST AND RENON EQUATION OF STATE ...................................................................... 60 6.4.3 THE WU AND PRAUSNITZ EQUATION OF STATE .................................................................... 60 6.4.4 THE MYERS-SANDLER-WOOD EQUATION OF STATE ............................................................ 61 6.4.5 COMPARATIVE STUDY OF EQUATIONS OF STATE .................................................................. 61 7 EQUILIBRIUM CALCULATIONS ................................................................................. 63 7.1 SPECIATION EQUILIBRIUM 63 7.2 SOLID-LIQUID EQUILIBRIUM 64 7.2.1 SATURATION INDEX .............................................................................................................. 65 7.3 VAPOR-LIQUID EQUILIBRIUM 65 7.3.1 HENRY’S CONSTANT ............................................................................................................. 66 7.4 LIQUID-LIQUID EQUILIBRIUM 67 7.5 COMPOSITION DEPENDENCE OF EQUILIBRIUM CONSTANTS 68 7.6 TEMPERATURE DEPENDENCE OF EQUILIBRIUM CONSTANTS 71 7.7 PRESSURE DEPENDENCE OF EQUILIBRIUM CONSTANTS 72 7.7.1 THE PRESSURE DEPENDENCE OF ACTIVITY COEFFICIENTS .................................................... 73 8 THERMAL AND VOLUMETRIC PROPERTIES ......................................................... 75 8.1 PARTIAL AND APPARENT MOLAR PROPERTIES 75 8.2 THERMAL PROPERTIES 75 8.2.1 HEAT OF DILUTION ................................................................................................................ 78 8.2.2 HEAT OF SOLUTION ............................................................................................................... 78 8.2.3 MEASUREMENT OF HEATS OF DILUTION AND SOLUTION ...................................................... 80 8.2.4 MEASUREMENT OF HEAT CAPACITY ..................................................................................... 82 8.3 VOLUMETRIC PROPERTIES 84 9 PHASE DIAGRAMS .......................................................................................................... 90 9.1 PHASE RULE AND INVARIANT POINTS 90 9.2 BINARY PHASE DIAGRAM 90 9.3 TERNARY PHASE DIAGRAM 92 9.4 QUATERNARY SYSTEMS 94 10 CRYSTALLIZATION........................................................................................................ 98 10.1 SUPERSATURATION 98 10.2 THE KELVIN EQUATION FOR NUCLEATION 99 10.3 ACTIVATION ENERGY FOR CRYSTAL FORMATION 101 10.4 PRIMARY NUCLEATION RATE 101 11 FRACTIONAL CRYSTALLIZATION .......................................................................... 102 3 11.1 PRODUCTION OF KNO3 105 11.2 OPTIMIZATION OF FRACTIONAL CRYSTALLIZATION PROCESSES 107 11.3 SIMULATION OF K2SO4 PRODUCTION PROCESS 108 4 1 Introduction Phase equilibria with systems containing electrolytes are of great importance. A few examples may illustrate this: Production of fertilizers and salts is often performed by precipitation of pure solids from multi component ionic solutions. Scaling in heat exchangers is caused by some salts for which the solubility decrease with increasing temperature. Scaling in oil production and in geothermal heat production is caused by some salts for which the solubility decrease with decreasing pressure and decreasing temperature. Solubility of gases in electrolyte solutions is of importance in many pollution abatement processes. The influence of salts on the vapor pressure of aqueous solutions of organic material may be important for the proper choice of a separation process. Salts may even introduce a liquid- liquid phase splitting in aqueous solutions of organic substances. Electrolytes dissociate into ions when they are dissolved in polar solvents like water or alcohols. A strong electrolyte will dissociate completely while a weak electrolyte will only dissociate partly. The presence of the charged ions causes the electrolyte solution to deviate much more from ideal solution behavior than a non-electrolyte solution does. This is the case even at very low electrolyte concentrations. The reason is that the ions interact with electrostatic forces which are of much longer range than those involved in the interaction of neutral molecules. This effect is stronger the greater the charge on the ions. For a proper description of electrolyte solutions not only the short range energetic interactions but also the long range electrostatic interactions have to be considered. Another basic difference between electrolyte and non-electrolyte solutions is the constraint of electro- neutrality on electrolyte solutions. Because of this constraint, a system consisting of water and two ions is a binary system: The concentrations of the two ions cannot be chosen independently so the system has two