Three Fermion Generations with Two Unbroken Gauge Symmetries from the Complex Sedenions

Total Page:16

File Type:pdf, Size:1020Kb

Three Fermion Generations with Two Unbroken Gauge Symmetries from the Complex Sedenions Eur. Phys. J. C (2019) 79:446 https://doi.org/10.1140/epjc/s10052-019-6967-1 Regular Article - Theoretical Physics Three fermion generations with two unbroken gauge symmetries from the complex sedenions Adam B. Gillard, Niels G. Gresnigta Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou HET, Jiangsu 215123, China Received: 24 April 2019 / Accepted: 17 May 2019 / Published online: 27 May 2019 © The Author(s) 2019 Abstract We show that three generations of leptons and constant. Octonions also describe geometry in 10 dimen- quarks with unbroken Standard Model gauge symmetry sions [5], which have made them useful in supergravity and SU(3)c × U(1)em can be described using the algebra of superstring theories [6–9]. Recently there has been a revived complexified sedenions C ⊗ S. A primitive idempotent is interest in using the division algebras to attempt to construct constructed by selecting a special direction, and the action of a theoretical basis for the observed Standard Model (SM) this projector on the basis of C ⊗ S can be used to uniquely gauge groups and observed particle spectrum [10–17]. split the algebra into three complex octonion subalgebras A Witt decomposition of the adjoint algebra of left actions ∼ C ⊗ O. These subalgebras all share a common quaternionic (C ⊗ O)L = C(6) of C ⊗ O, generated from all composed subalgebra. The left adjoint actions of the 8 C-dimensional left actions of the complex octonions on themselves decom- C ⊗ O subalgebras on themselves generates three copies of poses (C⊗O)L into minimal left ideals [18]. The basis states the Clifford algebra C(6). It was previously shown that the of these ideals were recently shown to transform as a single minimal left ideals of C(6) describe a single generation of generation of leptons and quarks under the unbroken uni- fermions with unbroken SU(3)c ×U(1)em gauge symmetry. tary symmetries SU(3)c and U(1)em [11]. In a complemen- Extending this construction from C ⊗ O to C ⊗ S naturally tary work by [19] it was shown that by considering the right leads to a description of exactly three generations. adjoint action of C(6) on the eight minimal left ideals of the algebra, one can also include the spinorial degrees of free- dom.1 One copy of C(6) = C(8) therefore provides the full 1 Introduction degrees of freedom for one generation of Dirac spinors. The main result presented here is that if we instead consider a The role of division algebras, particularly the octonion alge- decomposition of (C ⊗ S)L , where the sedenions S are the bra, in particle physics has a long history. Theorems by Hur- next Cayley-Dickson algebra after the octonions, then these witz [1] and Zorn [2] guarantee that there are only four earlier results are naturally extended from one single gener- normed division algebras, which are also the only four alter- ation to exactly three. native division algebras; the reals R, complex numbers C, Given that a considerable amount of the SM structure for quaternions H, and the octonions O. The first results relating a single generation of fermions can be realised in terms of the the octonions to the symmetries of (one generation of) quarks complex octonions C ⊗ O, and its associated adjoint algebra ∼ goes back to the 1970s [3,4]. The hypothesis that octonions of left actions (C⊗O)L = C(6), a natural question is how to might play a role in the description of quark symmetries fol- extend these encouraging results from a single generation to lows from the observation that Aut(O) = G2 contains the exactly three generations. Although it is possible to represent physically important subgroup SU(3), corresponding to the three generations of fermion states inside a single copy of subgroup that holds one of the octonionic imaginary units C(6) [20,21], in that case the physical states are no longer 1 [11] describes one generation of fermions in terms of two out of eight minimal left ideals of C(6), without any mention of spinorial degrees of freedom. These can be acocunted for by including a copy of the complex quaternions C ⊗ H.[19] on the other hand writes down all eight of the minimal left ideals, which explicitly includes the spinorial a e-mail: [email protected] degrees of freedom. 123 446 Page 2 of 11 Eur. Phys. J. C (2019) 79 :446 the basis states of minimal left ideals as for the case of a 2 One generation of fermions as the basis states of the ∼ single generation. A three generation representation in terms minimal left ideals of (C ⊗ O)L = C(6) of C(6) therefore comes at the cost of giving up the elegant construction of minimal left ideals giving rise to a single One of the main observations in [11]2 and [19] is that the generation. Instead, one might therefore look for a larger basis states of the minimal left ideals of C(6) transform mathematical structure to describe three generations. as a single generation of leptons and quarks with unbro- Since describing a single generation requires one copy of ken SU(3)c and U(1)em gauge symmetries. In [11] the alge- the octonions, it seems reasonable to expect a three gener- bra C(6) is identified as the adjoint algebra of left actions ation model to require three copies of the octonions. This (C ⊗ O)L whereas in [19] C(6) is taken without any ref- makes the exceptional Jordan algebra J3(O) a natural can- erence to division algebras. In this section the minimal left ∼ didate. This intriguing mathematical structure and its role ideals of (C ⊗ O)L = C(6) are constructed using the Witt in particle physics has recently been explored by various decomposition for C(6). The basis states of these ideals are authors [22–24]. then shown to transform as a single generation of leptons and A different approach is taken here. C and O are both divi- quarks with unbroken SU(3)c and U(1)em. More details of sion algebras, and starting from R, all the other division alge- can be found in sections 4.5 and 6.6 of [11]. bras can be generated via the Cayley-Dickson process. Given Leptons and quarks are Dirac spinors. One way of includ- that this process continues beyond the octonions, one may ing the spinorial degrees of freedom is to enlarge the algebra wonder if the next algebra in the sequence, the sedenions S, from C ⊗ O to C ⊗ H ⊗ O and to consider both right and may be a suitable mathematical structure to represent three left adjoint actions. The approach taken in [11] it to con- generations of fermions. This paper confirms that the answer sider the combined left and right adjoint action of C ⊗ H ∼ is yes. which is C(2) ⊗C C(2) = C(4), providing a representa- Starting with C⊗S we repeat the initial stages of the con- tion of the Dirac algebra. On the other hand, in [19] all the struction of [11]. We define a projection operator by choos- spinor degrees of freedom are contained in a single copy of ing a special direction, and use it to obtain a split basis of C(6). The left actions of C(6) on its eight minimal left 14 nilpotent ladder operators, defining two maximal totally ideals generates the unbroken gauge symmetries, whereas isotropic subspaces (MTIS). But instead of using these nilpo- the right actions contain the Dirac and isospin symmetries ∼ tents to construct two minimal left ideals of (C ⊗ S)L ,we C(6) = C(4)Dirac ⊗C C(2)isospin. Therefore, C(6) is instead observe that these 14 nilpotents uniquely divide into large enough to contain the full degrees of freedom for a three sets of ladder operators, in such a way that each set pro- single generation of leptons and quarks. vides a basis for a C ⊗ O subalgebra of C ⊗ S. Our approach The octonions O are spanned by the identity 1 = e0 and therefore gives rise to three copies of the octonions from the seven anti-commuting square roots of minus one ei satisfying sedenions. In this construction one raising operator and one =−δ + , lowering operator is common to all three sets. The shared ei e j ije0 ijkek (1) ladder operators generate a common quaternionic subalge- where bra C ⊗ H =∼ C(2). From the three sets of ladder operators = = , 2 = , we construct six ideals. These ideals transform as three gen- ei e0 e0ei ei e0 e0 (2) erations of fermions and antifermions under the unbroken and is a completely antisymmetric tensor with value +1 gauge symmetry SU(3)c × U(1)em. ijk = , , , The next section reviews the construction of one gener- when ijk 124 156, 137, 235, 267 346 457. The mul- tiplication of octonions is shown in Fig. 1. The multiplication ation of fermions with unbroken SU(3)c × U(1)em gauge symmetry starting from the complex octonions C ⊗ O. Then structure here follows that of [11], but is not unique. In par- in Sect. 3 it is shown that the same construction can be ticular, the Fano plane in the earlier work [3] is based on a used to describe three generations of leptons in terms of different multiplication structure. three C(2) subalgebras of C(6), generated from three Each pair of distinct points lies on a unique line of three C ⊗ H subalgebras of C ⊗ O.
Recommended publications
  • Algebras in Which Every Subalgebra Is Noetherian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 2983–2990 S 0002-9939(2014)12052-1 Article electronically published on May 21, 2014 ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD (Communicated by Birge Huisgen-Zimmermann) Abstract. We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property. 1. Introduction Throughout this paper k will denote an algebraically closed field and all algebras will be k-algebras. It is not hard to show that if C is a commutative k-algebra with the property that every subalgebra is finitely generated (or noetherian), then C must be of Krull dimension at most one. (See Section 3 for one possible proof.) The aim of this paper is to show that this property holds more generally in the noncommutative universe. Before stating the result we need some notation. Let X be a projective variety ∗ with invertible sheaf M and automorphism σ and write Mn = M⊗σ (M) ···⊗ n−1 ∗ (σ ) (M). Then the twisted homogeneous coordinate ring of X with respect to k M 0 M this data is the -algebra B = B(X, ,σ)= n≥0 H (X, n), under a natu- ral multiplication. This algebra is fundamental to the theory of noncommutative algebraic geometry; see for example [ATV1, St, SV]. In particular, if S is the 3- dimensional Sklyanin algebra, as defined for example in [SV, Example 8.3], then B(E,L,σ)=S/gS for a central element g ∈ S and some invertible sheaf L over an elliptic curve E.WenotethatS is a graded ring that can be regarded as the “co- P2 P2 ordinate ring of a noncommutative ” or as the “coordinate ring of nc”.
    [Show full text]
  • Lie Group Homomorphism Φ: → Corresponds to a Linear Map Φ: →
    More on Lie algebras Wednesday, February 14, 2018 8:27 AM Simple Lie algebra: dim 2 and the only ideals are 0 and itself. Have classification by Dynkin diagram. For instance, , is simple: take the basis 01 00 10 , , . 00 10 01 , 2,, 2,, . Suppose is in the ideal. , 2. , , 2. If 0, then X is in the ideal. Then ,,, 2imply that H and Y are also in the ideal which has to be 2, . The case 0: do the same argument for , , , then the ideal is 2, unless 0. The case 0: , 2,, 2implies the ideal is 2, unless 0. The ideal is {0} if 0. Commutator ideal: , Span,: , ∈. An ideal is in particular a Lie subalgebra. Keep on taking commutator ideals, get , , ⊂, … called derived series. Solvable: 0 for some j. If is simple, for all j. Levi decomposition: any Lie algebra is the semi‐direct product of a solvable ideal and a semisimple subalgebra. Similar concept: , , , , …, ⊂. Sequence of ideals called lower central series. Nilpotent: 0 for some j. ⊂ . Hence nilpotent implies solvable. For instance, the Lie algebra of nilpotent upper triangular matrices is nilpotent and hence solvable. Can take the basis ,, . Then ,,, 0if and , if . is spanned by , for and hence 0. The Lie algebra of upper triangular matrices is solvable but not nilpotent. Can take the basis ,,,, ,,…,,. Similar as above and ,,,0. . So 0. But for all 1. Recall that any Lie group homomorphism Φ: → corresponds to a linear map ϕ: → . In the proof that a continuous homomorphism is smooth. Lie group Page 1 Since Φ ΦΦΦ , ∘ Ad AdΦ ∘.
    [Show full text]
  • Gauging the Octonion Algebra
    UM-P-92/60_» Gauging the octonion algebra A.K. Waldron and G.C. Joshi Research Centre for High Energy Physics, University of Melbourne, Parkville, Victoria 8052, Australia By considering representation theory for non-associative algebras we construct the fundamental and adjoint representations of the octonion algebra. We then show how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. We find that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. PACS numbers: 11.30.Ly, 12.10.Dm, 12.40.-y. Typeset Using REVTEX 1 L INTRODUCTION The aim of this work is to genuinely gauge the octonion algebra as opposed to relating properties of this algebra back to the well known theory of Lie Groups and fibre bundles. Typically most attempts to utilise the octonion symmetry in physics have revolved around considerations of the automorphism group G2 of the octonions and Jordan matrix representations of the octonions [1]. Our approach is more simple since we provide a spinorial approach to the octonion symmetry. Previous to this work there were already several indications that this should be possible. To begin with the statement of the gauge principle itself uno theory shall depend on the labelling of the internal symmetry space coordinates" seems to be independent of the exact nature of the gauge algebra and so should apply equally to non-associative algebras. The octonion algebra is an alternative algebra (the associator {x-1,y,i} = 0 always) X -1 so that the transformation law for a gauge field TM —• T^, = UY^U~ — ^(c^C/)(/ is well defined for octonionic transformations U.
    [Show full text]
  • Notes on Mathematical Logic David W. Kueker
    Notes on Mathematical Logic David W. Kueker University of Maryland, College Park E-mail address: [email protected] URL: http://www-users.math.umd.edu/~dwk/ Contents Chapter 0. Introduction: What Is Logic? 1 Part 1. Elementary Logic 5 Chapter 1. Sentential Logic 7 0. Introduction 7 1. Sentences of Sentential Logic 8 2. Truth Assignments 11 3. Logical Consequence 13 4. Compactness 17 5. Formal Deductions 19 6. Exercises 20 20 Chapter 2. First-Order Logic 23 0. Introduction 23 1. Formulas of First Order Logic 24 2. Structures for First Order Logic 28 3. Logical Consequence and Validity 33 4. Formal Deductions 37 5. Theories and Their Models 42 6. Exercises 46 46 Chapter 3. The Completeness Theorem 49 0. Introduction 49 1. Henkin Sets and Their Models 49 2. Constructing Henkin Sets 52 3. Consequences of the Completeness Theorem 54 4. Completeness Categoricity, Quantifier Elimination 57 5. Exercises 58 58 Part 2. Model Theory 59 Chapter 4. Some Methods in Model Theory 61 0. Introduction 61 1. Realizing and Omitting Types 61 2. Elementary Extensions and Chains 66 3. The Back-and-Forth Method 69 i ii CONTENTS 4. Exercises 71 71 Chapter 5. Countable Models of Complete Theories 73 0. Introduction 73 1. Prime Models 73 2. Universal and Saturated Models 75 3. Theories with Just Finitely Many Countable Models 77 4. Exercises 79 79 Chapter 6. Further Topics in Model Theory 81 0. Introduction 81 1. Interpolation and Definability 81 2. Saturated Models 84 3. Skolem Functions and Indescernables 87 4. Some Applications 91 5.
    [Show full text]
  • Borel Subgroups and Flag Manifolds
    Topics in Representation Theory: Borel Subgroups and Flag Manifolds 1 Borel and parabolic subalgebras We have seen that to pick a single irreducible out of the space of sections Γ(Lλ) we need to somehow impose the condition that elements of negative root spaces, acting from the right, give zero. To get a geometric interpretation of what this condition means, we need to invoke complex geometry. To even define the negative root space, we need to begin by complexifying the Lie algebra X gC = tC ⊕ gα α∈R and then making a choice of positive roots R+ ⊂ R X gC = tC ⊕ (gα + g−α) α∈R+ Note that the complexified tangent space to G/T at the identity coset is X TeT (G/T ) ⊗ C = gα α∈R and a choice of positive roots gives a choice of complex structure on TeT (G/T ), with the holomorphic, anti-holomorphic decomposition X X TeT (G/T ) ⊗ C = TeT (G/T ) ⊕ TeT (G/T ) = gα ⊕ g−α α∈R+ α∈R+ While g/t is not a Lie algebra, + X − X n = gα, and n = g−α α∈R+ α∈R+ are each Lie algebras, subalgebras of gC since [n+, n+] ⊂ n+ (and similarly for n−). This follows from [gα, gβ] ⊂ gα+β The Lie algebras n+ and n− are nilpotent Lie algebras, meaning 1 Definition 1 (Nilpotent Lie Algebra). A Lie algebra g is called nilpotent if, for some finite integer k, elements of g constructed by taking k commutators are zero. In other words [g, [g, [g, [g, ··· ]]]] = 0 where one is taking k commutators.
    [Show full text]
  • Topoi for a Super-Noetherian Subalgebra Equipped with a Riemannian Number
    Topoi for a Super-Noetherian Subalgebra Equipped with a Riemannian Number M. Lafourcade, Q. Germain and H. D´escartes Abstract Let λ be a Gaussian, integrable, canonically Hadamard modulus. Re- cent developments in dynamics [32] have raised the question of whether V 2 i. We show that jm^j ∼ P. Now in this setting, the ability to char- acterize categories is essential. It is not yet known whether ξ 6= −∞, although [4, 4, 10] does address the issue of minimality. 1 Introduction In [33], the authors address the separability of Weierstrass, stochastically anti- hyperbolic graphs under the additional assumption that every subset is measur- able. Is it possible to compute Clifford sets? The work in [36] did not consider the meromorphic case. This could shed important light on a conjecture of Sylvester. Is it possible to characterize stable subgroups? It is well known that z ≥ !(f). In [32], the authors address the admissibility of sets under the additional assumption that every Fourier, contra-Gauss, contra-stable set is smoothly Lobachevsky and simply Bernoulli. This could shed important light on a con- jecture of Clairaut. The work in [29] did not consider the null case. The ground- breaking work of D. Anderson on regular homomorphisms was a major advance. 1 It is well known that 0p ∼ 1 . Recently, there has been much interest in the description of ultra-discretely tangential equations. It would be interesting to apply the techniques of [32] to prime vector spaces. In [23], the main result was the extension of unique monoids. In [27], the authors address the admissibility of intrinsic matrices under the additional assumption that there exists an orthogonal, stochastically pseudo- minimal and simply super-separable super-Artinian, almost everywhere intrin- sic, conditionally semi-onto random variable.
    [Show full text]
  • Chapter 5 Subalgebras and Unions
    CHAPTER 5 SUBALGEBRAS AND UNIONS §a Weak and relative subalgebras The subalgebra concept has two very natural weakenings. The first of these concerns the algebraic structure that is inherited by arbitrary subsets of the universe of an algebra, as opposed to subuniverses; one of the more compel- ling ways in which partial algebras arise in the study of total algebras. The second corresponds with the algebraic structure necessary for a mapping from another algebra to be a homomorphism. a1 Definition. Let A = 〈A, I〉 and B = 〈B, J〉 be algebras such that A ⊆ B. (a) A is a relative subalgebra of B, notation A ⊆ B, and B a outer extension of A, if Dom(I) = Dom(J), and for every symbol S ∈ Dom(J), I(S) = J(S)A. (b) A is a weak subalgebra of B, notation A ⊆w B, if Dom(I) = Dom(J), and for every symbol S ∈ Dom(I), I(S) ⊆ J(S). Observe that any subset A of the universe of an algebra B determines a unique relative subalgebra of B that has A for universe. We denote it by AB. On the other hand, there may be many weak subalgebras of B that have A for a universe. In particular, there may be many weak subalgebras of B that have B for a universe; we shall call them weakenings of B. If A is a weakening of B, then B is an inner extension of A. If B is a total algebra, and A is dense in B, we say that B is a completion of AB.
    [Show full text]
  • The Space of Measurement Outcomes As a Spectrum for Non-Commutative Algebras
    The space of measurement outcomes as a spectrum for non-commutative algebras Bas Spitters Bohrification defines a locale of hidden variables internal in a topos. We find that externally this is the space of partial measurement outcomes. By considering the ::-sheafification, we obtain the space of measurement outcomes which coincides with the spectrum for commutative C*-algebras. 1 Introduction By combining Bohr’s philosophy of quantum mechanics, Connes’ non-commutative geometry [Con94], constructive Gelfand duality [BM00b, BM00a, Coq05, CS09] and inspiration from Doering and Isham’s spectral presheaf [DI08], we proposed Bohrification as a spatial quantum logic [HLS09a, HLS09b]. Given a C*-algebra A, modeling a quantum system, consider the poset of Bohr’s classical concepts C (A) := fC j C is a commutative C*-subalgebra of Ag: In the functor topos SetsC (A) we consider the Bohrification A: the trivial functor C 7! C. This is an internal C*-algebra of which we can compute the spectrum, an internal locale S in the topos SetsC (A). This locale, or its externalization, is our proposal for an intuitionistic quantum logic [HLS09a, HLS09b]. In the present paper we explore a possible refinement of this proposal motivated by what happens for commutative algebras and by questions about maximal subalgebras. In section 4 we compute the externalization of this locale. It is the space of partial measurement outcomes: the points are pairs of a C*-subalgebra together with a point of its spectrum. This construction raises two natural questions: • Can we restrict to the maximal commutative subalgebras, i.e. total measurement frames? • Are we allowed to use classical logic internally? In section 5 we will see that, in a sense, the answers to both of these questions are positive.
    [Show full text]
  • LIE ALGEBRAS 1 Definition of a Lie Algebra K Is a Fixed Field. Let L Be a K-Vector Space (Or Vector Space). We Say That L Is
    LIE ALGEBRAS 1 Definition of a Lie algebra k is a fixed field. Let L be a k-vector space (or vector space). We say that L is a k-algebra (or algebra) if we are given a bilinear map L×L −! L denoted (x; y) 7! xy. If L; L0 are algebras, an algebra homomorphism f : L −! L0 is a linear map such that f(xy) = f(x)f(y) for all x; y. We say that f is an algebra isomorphism if it is an algebra homomorphism and a vector space isomorphism. In this case f −1 : L0 −! L is an algebra isomorphism. If L is an algebra, a subset L0 ⊂ L is a subalgebra if it is a vector subspace and x 2 L0; y 2 L0 =) xy 2 L0. Then L0 is itself an algebra in an obvious way. If L is an algebra, a subset I ⊂ L is an ideal if it is a vector subspace; x 2 L; y 2 I =) xy 2 I; x 2 I; y 2 L =) xy 2 I. Then I is a subalgebra. Moreover, the quotient vector space V=I is an algebra with multiplication (x + I)(y + I = xy + I. (Check that this is well defined.) The canonical map L −! L=I is an algebra homomorphism with kernel I. Conversely, if f : L −! L0 is any algebra homomorphism then ker(f) = f −1(0) is an ideal of L. We say that the algebra L is a Lie algebra if (a) xx = 0 for all x; (b) x(yz) + y(zx) + z(xy) = 0 for all x; y; z.
    [Show full text]
  • (Universal Algebra And) Category Theory in Foundations of Computer Science
    (Universal Algebra and) Category Theory in Foundations of Computer Science Andrzej Tarlecki Institute of Informatics Faculty of Mathematics, Informatics and Mechanics University of Warsaw http://www.mimuw.edu.pl/~tarlecki office: 4750 [email protected] phone: (48)(22)(55) 44475, 20443 This course: http://www.mimuw.edu.pl/~tarlecki/teaching/ct/ Andrzej Tarlecki: Category Theory, 2018 - 1 - Universal algebra and category theory: basic ideas, notions and some results • Algebras, homomorphisms, equations: basic definitions and results • Categories; examples and simple categorical definitions • Limits and colimits • Functors and natural transformations • Adjunctions • Cartesian closed categories • Monads • Institutions (abstract model theory, abstract specification theory) BUT: Tell me what you want to learn! Andrzej Tarlecki: Category Theory, 2018 - 2 - Literature Plenty of standard textbooks But this will be roughly based on: • D.T. Sannella, A. Tarlecki. Foundations of Algebraic Specifications and Formal Program Development. Springer, 2012. − Chap. 1: Universal algebra − Chap. 2: Simple equational specifications − Chap. 3: Category theory Andrzej Tarlecki: Category Theory, 2018 - 3 - One motivation Software systems (modules, programs, databases. ): sets of data with operations on them • Disregarding: code, efficiency, robustness, reliability, . • Focusing on: CORRECTNESS Universal algebra Category theory from rough analogy A language to further abstract away from the standard notions of univer- module interface ; signature sal algebra, to deal with their numer- module ; algebra ous variants needed in foundations of module specification ; class of algebras computer science. Andrzej Tarlecki: Category Theory, 2018 - 4 - Signatures Algebraic signature: Σ = (S; Ω) • sort names: S • operation names, classified by arities and result sorts: Ω = hΩw;siw2S∗;s2S Alternatively: Σ = (S; Ω; arity; sort) with sort names S, operation names Ω, and arity and result sort functions arity :Ω ! S∗ and sort :Ω ! S.
    [Show full text]
  • Quasi-Hermitian Locally Compact Groups Are Amenable
    1 QUASI-HERMITIAN LOCALLY COMPACT GROUPS ARE AMENABLE EBRAHIM SAMEI AND MATTHEW WIERSMA Abstract. A locally compact group G is Hermitian if the spectrum SpL1(G)(f) ⊆ R for every 1 ∗ f ∈ L (G) satisfying f = f , and quasi-Hermitian if SpL1(G)(f) ⊆ R for every f ∈ Cc(G) satisfying f = f ∗. We show that every quasi-Hermitian locally compact group is amenable. This, in particular, confirms the long-standing conjecture that every Hermitian locally compact group is amenable, a problem that has remained open since the 1960s. Our approach involves introducing the theory of “spectral interpolation of triple Banach ∗-algebras” and applying ∗ it to a family PFp(G) (1 ≤ p ≤ ∞) of Banach ∗-algebras related to convolution operators 1 ∗ ∗ that lie between L (G) and Cr (G), the reduced group C -algebra of G. We show that if ∗ ∗ G is quasi-Hermitian, then PFp(G) and Cr (G) have the same spectral radius on Hermitian elements in Cc(G) for p ∈ (1, ∞), and then deduce that G must be amenable. We also give an alternative proof to Jenkin’s result in [19] that a discrete group containing a free sub-semigroup on two generators is not quasi-Hermitian. This, in particular, provides a dichotomy on discrete elementary amenable groups: either they are non quasi-Hermitian or they have subexponential growth. Finally, for a non-amenable group G with either rapid decay or Kunze-Stein property, ∗ we prove the stronger statement that PFp(G) is not “quasi-Hermitian relative to Cc(G)” unless p = 2. 1. Introduction Let A be a Banach ∗-algebra, i.e.
    [Show full text]
  • Structural Co~Pleteness in Algebra and Logic
    COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI 54, ALGEBRAIC LOGIC, BUDAPEST (HUNGARY), 1988 Structural Co~pleteness in Algebra and Logic CLIFFORD BERGMAN A number of authors, particularly those studying "intermediate" intu­ it\onistjc logic, have asked whether a given logic is structurally complete. See [14] and [12] for example. Roughly speaking, a logic is structurally com­ plete if every proper extension must contain new logical axioms (as opposed to nothing but new rules of inference). In particular, structural complete­ ness can be seen as a kind of maximality condition on a logic. Using techniques of algebraic logic, it is possible to study many log­ ics by finding an appropriate class of algebras in which various (algebraic) properties reflect the logical ones of interest. The property corresponding to structural completeness turns out to be quite interesting algebraically, and can be studied independently of any connections to logic. This has been done in a number of papers such as [7], [2] and [9]. In this paper we will briefly consider the notion of structural complete­ ness in its original logical context. We then go on to define and study the algebraic analog, as well as a hereditary version, called deductiveness. Unlike the situation in universal algebra, there is not yet any general agreement in algebraic logic on the definition of basic concepts (such as a logic!) or even on the motivating examples. Since our intent in section 1 is ' primarily motivational, we do not feel it is necessary to completely specify what we mean by a "logic". Instead we give what we hope is a minimal set of conditions that will hold in any reasonable definition of the term.
    [Show full text]