LIE ALGEBRAS 1 Definition of a Lie Algebra K Is a Fixed Field. Let L Be a K-Vector Space (Or Vector Space). We Say That L Is

Total Page:16

File Type:pdf, Size:1020Kb

LIE ALGEBRAS 1 Definition of a Lie Algebra K Is a Fixed Field. Let L Be a K-Vector Space (Or Vector Space). We Say That L Is LIE ALGEBRAS 1 Definition of a Lie algebra k is a fixed field. Let L be a k-vector space (or vector space). We say that L is a k-algebra (or algebra) if we are given a bilinear map L×L −! L denoted (x; y) 7! xy. If L; L0 are algebras, an algebra homomorphism f : L −! L0 is a linear map such that f(xy) = f(x)f(y) for all x; y. We say that f is an algebra isomorphism if it is an algebra homomorphism and a vector space isomorphism. In this case f −1 : L0 −! L is an algebra isomorphism. If L is an algebra, a subset L0 ⊂ L is a subalgebra if it is a vector subspace and x 2 L0; y 2 L0 =) xy 2 L0. Then L0 is itself an algebra in an obvious way. If L is an algebra, a subset I ⊂ L is an ideal if it is a vector subspace; x 2 L; y 2 I =) xy 2 I; x 2 I; y 2 L =) xy 2 I. Then I is a subalgebra. Moreover, the quotient vector space V=I is an algebra with multiplication (x + I)(y + I = xy + I. (Check that this is well defined.) The canonical map L −! L=I is an algebra homomorphism with kernel I. Conversely, if f : L −! L0 is any algebra homomorphism then ker(f) = f −1(0) is an ideal of L. We say that the algebra L is a Lie algebra if (a) xx = 0 for all x; (b) x(yz) + y(zx) + z(xy) = 0 for all x; y; z. (Jacobi identity). Note that (a) implies (a') xy = −yx for all x; y. Indeed xy + yx = (x + y)(x + y) − xx − yy = 0. Traditionally in a Lie algebra one writes [x; y] instead of xy and one calls [x; y] the bracket. Example (a). Let A be an algebra. Assume that (xy)z = x(yz), that is, the algebra A is associative. Define a new algebra structure on A by [x; y] = xy − yx. This makes A into a Lie algebra. We check the Jacobi identity: [x; [y; z]] + [y; [z; x]] + [z; [x; y]] = x(yz − zy) − (yz − zy)x + y(zx − xz) − (zx − xz)y + z(xy − yx) − (xy − yx)z = 0: Example (b). Let V be a vector space. Let End(V ) be the vector space of endomorphisms of V (linear maps V −! V ). This is an associative algebra where the product xy is the composition of endomorphisms (xy)(v) = x(y(v)) for v 2 V . By example (a), End(V ) is a Lie algebra with bracket [x; y] = xy − yx. This Lie algebra is also denoted by gl(V ). Typeset by AMS-TEX 1 2 LIE ALGEBRAS 1 Example (c). Let V be as in (b). Assume that dim(V ) < 1. Let L = fx 2 End(V )jtr(x) = 0g. This is a (Lie) subalgebra of End(V ). Indeed, if x; y 2 End(V ) = gl(V ) then tr[x; y] = tr(xy − yx) = 0 hence [x; y] 2 L. Thus L is even an ideal of gl(V ). The Lie algebra L is also denoted by sl(V ). Example (d). Let V be as in (b). Let (; ) : V × V −! k be a bilinear map. Let L = fx 2 End(V )j(x(v); v0) + (v; x(v0)) = 08v; v0 2 V g. We show that L is a Lie subalgebra of gl(V ). Indeed, if x; y 2 L and v; v0 2 V we have ([x; y](v); v0) + (v; [x; y](v0)) = (x(y(v)); v0) − (y(x(v); v0) + (v; x(y(v0)) − (v; y(x(v0)) = 0: Example (e). Let V be as in (c). Assume that we are given a sequence of vector subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ : : : ⊂ Vn = V , dim Vi = i. Let t = fx 2 End(V )jx(Vi) ⊂ Vi for i 2 [0; n]g n = fx 2 End(V )jx(Vi) ⊂ Vi−1 for i 2 [1; n]g. Then t is a Lie subalgebra of End(V ) and n is a Lie subalgebra of t. Example (f). Let A be an algebra. A derivation of A is a linear map d : A −! A such that d(xy) = d(x)y + xd(y) = 0 for all x; y. (Leibniz rule). Let Der(A) be the set of all derivations of A. This is a vector subspace of End(A). We show that Der(A) is a Lie subalgebra of End(A). Indeed, let d; d0 2 Der(A) and x; y 2 A. We have [d; d0](xy) = d(d0(xy)) − d0(d(xy)) = d(d0(x)y + xd0(y)) − d0(d(x)y + xd(y)) = d(d0(x))y + d0(x)d(y) + d(x)d0(y) + xd(d0(y)) − d0(d(x))y − d(x)d0(y) − d0(x)d(y) − xd0(d(y)) = d(d0(x))y − d0(d(x))y + xd(d0(y)) − xd0(d(y)) = [d; d0](x)y + x[d; d0](y) hence [d; d0] 2 Der(A). Example (g). Let L be a Lie algebra. By (f), Der(L) is again a Lie algebra. If x 2 L then ad(x) : L −! L, y 7! [x; y] is a derivation of L, that is, ad(x)[y; y0] = [ad(x)(y); y0] + [y; ad(x)(y0)] for all y; y0. (Equivalently, [x; [y; y0]] = [[x; y]; y0] + [y; [x; y0]] which follows from Jacobi's identity.) The map x 7! ad(x) is a Lie algebra homomorphism L −! Der(L), that is, it is linear (obviously) and, for x; x0; y 2 L we have ad([x; x0])(y) = ad(x)(ad(x0)y) − ad(x0)(ad(x)y). (Equivalently, [[x; x0]; y] = [x; [x0; y]] − [x0; [x; y]], which again follows from Jacobi's identity.) Example (h). Let V be as in (a). Define an algebra structure on A on V by xy = 0 for all x; y. This is a Lie algebra. (An abelian Lie algebra.) Example (i). Let L be a Lie algebra. Let [L; L] be the vector subspace of L spanned by f[x; y]jx 2 L; y 2 Lg. This is an ideal of L. One calls [L; L] the derived algebra of L. Example (j). Let L be a Lie algebra. Let ZL = fx 2 Lj[x; y] = 08y 2 Lg. This is an (abelian) subalgebra of L called the centre of L. LIE ALGEBRAS 1 3 Example (k). Let L be a Lie algebra. Let K be a vector subspace of L. Then 0 NL(K) = fx 2 Lj[x; y] 2 K8y 2 Kg is a Lie subalgebra of L. Indeed, if x; x 2 0 0 0 0 NL(K) and y 2 K we have [[x; x ]; y] = [[x; y]; x ] + [x; [x ; y]] 2 [x ; K] + [x; K] ⊂ K + K ⊂ K. One calls NL(K) the normalizer of K in L. Example (l). Let L = sl(V ) where V is a 2-dimensional vector space. Identify L with the set of 2 × 2 matrices with trace 0. A basis is given by 0 1 0 0 1 0 e = 0 0 ; f = 1 0 ; g = 0 −1 : We have [e; f] = h; [h; e] = 2e; [h; f] = −2f. A Lie algebra L is said to be simple if it is not abelian and L has no ideals other than 0; L. We show that L in Ex.(l) is simple. (We assume 2−1 2 k.) Let I be an ideal other than 0. We show that I = L. Let x = ae + bf + ch 2 I − f0g. Now [e; [e; x]] = [e; bh − 2e] = −2be 2 I; [f; [f; x]] = [f; ah + 2cf] = 2af 2 I. If a 6= 0 we deduce f 2 I hence h = [e; f] 2 I and e = −2−1[e; h] 2 I; thus I = L. Similarly if b 6= 0 then I = L. Thus we may assume that a = b = 0. Then h 2 I and e = −2−1[e; h] 2 I; f = 2−1[f; h] 2 I so that I = L. ∼ Let A be an algebra. An automorphism of A is an algebra isomorphism L −! L. Lemma. Assume that k has characteristic 0. If d : A −! A is a derivation such n that n for some then d d is an automorphism of d = 0 n > 0 e = Pn2N n! : A −! A A. From the definition of a derivation we get ds dp dq s! (xy) = Pp+q=s p! (x) q! (y) for all s ≥ 0. (Use induction on s.) For x; y 2 A we have dp dq dp dq ds ed(x)ed(y) = (x) (y) = (x) (y) = (xy) = ed(xy): X p! X q! X X p! q! X s! p q s p+q=s s Thus ed is an algebra homomorphism. We have ede−d = e−ded = 1. Thus ed is a vector space isomorphism. The lemma is proved. Solvable, nilpotent Lie algebras Let L be a Lie algebra. If X; X0 are subsets of L, let [X; X0] be the subspace spanned by f[x; x0]jx 2 X; x0 2 X0g. If I; I0 are ideals of L then [I; I0] is an ideal of L. Hence L(0) = L; L(1) = [L; L]; L(2) = [L(1); L(1)]; L(3) = [L(2); L(2)]; : : : are ideals of L and L(0) ⊃ L(1) ⊃ L(2) ⊃ : : : . L is said to be solvable if L(n) = 0 for some n ≥ 1.
Recommended publications
  • Algebras in Which Every Subalgebra Is Noetherian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 2983–2990 S 0002-9939(2014)12052-1 Article electronically published on May 21, 2014 ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD (Communicated by Birge Huisgen-Zimmermann) Abstract. We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property. 1. Introduction Throughout this paper k will denote an algebraically closed field and all algebras will be k-algebras. It is not hard to show that if C is a commutative k-algebra with the property that every subalgebra is finitely generated (or noetherian), then C must be of Krull dimension at most one. (See Section 3 for one possible proof.) The aim of this paper is to show that this property holds more generally in the noncommutative universe. Before stating the result we need some notation. Let X be a projective variety ∗ with invertible sheaf M and automorphism σ and write Mn = M⊗σ (M) ···⊗ n−1 ∗ (σ ) (M). Then the twisted homogeneous coordinate ring of X with respect to k M 0 M this data is the -algebra B = B(X, ,σ)= n≥0 H (X, n), under a natu- ral multiplication. This algebra is fundamental to the theory of noncommutative algebraic geometry; see for example [ATV1, St, SV]. In particular, if S is the 3- dimensional Sklyanin algebra, as defined for example in [SV, Example 8.3], then B(E,L,σ)=S/gS for a central element g ∈ S and some invertible sheaf L over an elliptic curve E.WenotethatS is a graded ring that can be regarded as the “co- P2 P2 ordinate ring of a noncommutative ” or as the “coordinate ring of nc”.
    [Show full text]
  • Modules and Lie Semialgebras Over Semirings with a Negation Map 3
    MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2.
    [Show full text]
  • Lie Group Homomorphism Φ: → Corresponds to a Linear Map Φ: →
    More on Lie algebras Wednesday, February 14, 2018 8:27 AM Simple Lie algebra: dim 2 and the only ideals are 0 and itself. Have classification by Dynkin diagram. For instance, , is simple: take the basis 01 00 10 , , . 00 10 01 , 2,, 2,, . Suppose is in the ideal. , 2. , , 2. If 0, then X is in the ideal. Then ,,, 2imply that H and Y are also in the ideal which has to be 2, . The case 0: do the same argument for , , , then the ideal is 2, unless 0. The case 0: , 2,, 2implies the ideal is 2, unless 0. The ideal is {0} if 0. Commutator ideal: , Span,: , ∈. An ideal is in particular a Lie subalgebra. Keep on taking commutator ideals, get , , ⊂, … called derived series. Solvable: 0 for some j. If is simple, for all j. Levi decomposition: any Lie algebra is the semi‐direct product of a solvable ideal and a semisimple subalgebra. Similar concept: , , , , …, ⊂. Sequence of ideals called lower central series. Nilpotent: 0 for some j. ⊂ . Hence nilpotent implies solvable. For instance, the Lie algebra of nilpotent upper triangular matrices is nilpotent and hence solvable. Can take the basis ,, . Then ,,, 0if and , if . is spanned by , for and hence 0. The Lie algebra of upper triangular matrices is solvable but not nilpotent. Can take the basis ,,,, ,,…,,. Similar as above and ,,,0. . So 0. But for all 1. Recall that any Lie group homomorphism Φ: → corresponds to a linear map ϕ: → . In the proof that a continuous homomorphism is smooth. Lie group Page 1 Since Φ ΦΦΦ , ∘ Ad AdΦ ∘.
    [Show full text]
  • Gauging the Octonion Algebra
    UM-P-92/60_» Gauging the octonion algebra A.K. Waldron and G.C. Joshi Research Centre for High Energy Physics, University of Melbourne, Parkville, Victoria 8052, Australia By considering representation theory for non-associative algebras we construct the fundamental and adjoint representations of the octonion algebra. We then show how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. We find that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. PACS numbers: 11.30.Ly, 12.10.Dm, 12.40.-y. Typeset Using REVTEX 1 L INTRODUCTION The aim of this work is to genuinely gauge the octonion algebra as opposed to relating properties of this algebra back to the well known theory of Lie Groups and fibre bundles. Typically most attempts to utilise the octonion symmetry in physics have revolved around considerations of the automorphism group G2 of the octonions and Jordan matrix representations of the octonions [1]. Our approach is more simple since we provide a spinorial approach to the octonion symmetry. Previous to this work there were already several indications that this should be possible. To begin with the statement of the gauge principle itself uno theory shall depend on the labelling of the internal symmetry space coordinates" seems to be independent of the exact nature of the gauge algebra and so should apply equally to non-associative algebras. The octonion algebra is an alternative algebra (the associator {x-1,y,i} = 0 always) X -1 so that the transformation law for a gauge field TM —• T^, = UY^U~ — ^(c^C/)(/ is well defined for octonionic transformations U.
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • Introuduction to Representation Theory of Lie Algebras
    Introduction to Representation Theory of Lie Algebras Tom Gannon May 2020 These are the notes for the summer 2020 mini course on the representation theory of Lie algebras. We'll first define Lie groups, and then discuss why the study of representations of simply connected Lie groups reduces to studying representations of their Lie algebras (obtained as the tangent spaces of the groups at the identity). We'll then discuss a very important class of Lie algebras, called semisimple Lie algebras, and we'll examine the repre- sentation theory of two of the most basic Lie algebras: sl2 and sl3. Using these examples, we will develop the vocabulary needed to classify representations of all semisimple Lie algebras! Please email me any typos you find in these notes! Thanks to Arun Debray, Joakim Færgeman, and Aaron Mazel-Gee for doing this. Also{thanks to Saad Slaoui and Max Riestenberg for agreeing to be teaching assistants for this course and for many, many helpful edits. Contents 1 From Lie Groups to Lie Algebras 2 1.1 Lie Groups and Their Representations . .2 1.2 Exercises . .4 1.3 Bonus Exercises . .4 2 Examples and Semisimple Lie Algebras 5 2.1 The Bracket Structure on Lie Algebras . .5 2.2 Ideals and Simplicity of Lie Algebras . .6 2.3 Exercises . .7 2.4 Bonus Exercises . .7 3 Representation Theory of sl2 8 3.1 Diagonalizability . .8 3.2 Classification of the Irreducible Representations of sl2 .............8 3.3 Bonus Exercises . 10 4 Representation Theory of sl3 11 4.1 The Generalization of Eigenvalues .
    [Show full text]
  • Notes on Mathematical Logic David W. Kueker
    Notes on Mathematical Logic David W. Kueker University of Maryland, College Park E-mail address: [email protected] URL: http://www-users.math.umd.edu/~dwk/ Contents Chapter 0. Introduction: What Is Logic? 1 Part 1. Elementary Logic 5 Chapter 1. Sentential Logic 7 0. Introduction 7 1. Sentences of Sentential Logic 8 2. Truth Assignments 11 3. Logical Consequence 13 4. Compactness 17 5. Formal Deductions 19 6. Exercises 20 20 Chapter 2. First-Order Logic 23 0. Introduction 23 1. Formulas of First Order Logic 24 2. Structures for First Order Logic 28 3. Logical Consequence and Validity 33 4. Formal Deductions 37 5. Theories and Their Models 42 6. Exercises 46 46 Chapter 3. The Completeness Theorem 49 0. Introduction 49 1. Henkin Sets and Their Models 49 2. Constructing Henkin Sets 52 3. Consequences of the Completeness Theorem 54 4. Completeness Categoricity, Quantifier Elimination 57 5. Exercises 58 58 Part 2. Model Theory 59 Chapter 4. Some Methods in Model Theory 61 0. Introduction 61 1. Realizing and Omitting Types 61 2. Elementary Extensions and Chains 66 3. The Back-and-Forth Method 69 i ii CONTENTS 4. Exercises 71 71 Chapter 5. Countable Models of Complete Theories 73 0. Introduction 73 1. Prime Models 73 2. Universal and Saturated Models 75 3. Theories with Just Finitely Many Countable Models 77 4. Exercises 79 79 Chapter 6. Further Topics in Model Theory 81 0. Introduction 81 1. Interpolation and Definability 81 2. Saturated Models 84 3. Skolem Functions and Indescernables 87 4. Some Applications 91 5.
    [Show full text]
  • Matrix Lie Groups and Their Lie Algebras
    Matrix Lie groups and their Lie algebras Alen Alexanderian∗ Abstract We discuss matrix Lie groups and their corresponding Lie algebras. Some common examples are provided for purpose of illustration. 1 Introduction The goal of these brief note is to provide a quick introduction to matrix Lie groups which are a special class of abstract Lie groups. Study of matrix Lie groups is a fruitful endeavor which allows one an entry to theory of Lie groups without requiring knowl- edge of differential topology. After all, most interesting Lie groups turn out to be matrix groups anyway. An abstract Lie group is defined to be a group which is also a smooth manifold, where the group operations of multiplication and inversion are also smooth. We provide a much simple definition for a matrix Lie group in Section 4. Showing that a matrix Lie group is in fact a Lie group is discussed in standard texts such as [2]. We also discuss Lie algebras [1], and the computation of the Lie algebra of a Lie group in Section 5. We will compute the Lie algebras of several well known Lie groups in that section for the purpose of illustration. 2 Notation Let V be a vector space. We denote by gl(V) the space of all linear transformations on V. If V is a finite-dimensional vector space we may put an arbitrary basis on V and identify elements of gl(V) with their matrix representation. The following define various classes of matrices on Rn: ∗The University of Texas at Austin, USA. E-mail: [email protected] Last revised: July 12, 2013 Matrix Lie groups gl(n) : the space of n
    [Show full text]
  • What Does a Lie Algebra Know About a Lie Group?
    WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? HOLLY MANDEL Abstract. We define Lie groups and Lie algebras and show how invariant vector fields on a Lie group form a Lie algebra. We prove that this corre- spondence respects natural maps and discuss conditions under which it is a bijection. Finally, we introduce the exponential map and use it to write the Lie group operation as a function on its Lie algebra. Contents 1. Introduction 1 2. Lie Groups and Lie Algebras 2 3. Invariant Vector Fields 3 4. Induced Homomorphisms 5 5. A General Exponential Map 8 6. The Campbell-Baker-Hausdorff Formula 9 Acknowledgments 10 References 10 1. Introduction Lie groups provide a mathematical description of many naturally-occuring sym- metries. Though they take a variety of shapes, Lie groups are closely linked to linear objects called Lie algebras. In fact, there is a direct correspondence between these two concepts: simply-connected Lie groups are isomorphic exactly when their Lie algebras are isomorphic, and every finite-dimensional real or complex Lie algebra occurs as the Lie algebra of a simply-connected Lie group. To put it another way, a simply-connected Lie group is completely characterized by the small collection n2(n−1) of scalars that determine its Lie bracket, no more than 2 numbers for an n-dimensional Lie group. In this paper, we introduce the basic Lie group-Lie algebra correspondence. We first define the concepts of a Lie group and a Lie algebra and demonstrate how a certain set of functions on a Lie group has a natural Lie algebra structure.
    [Show full text]
  • Borel Subgroups and Flag Manifolds
    Topics in Representation Theory: Borel Subgroups and Flag Manifolds 1 Borel and parabolic subalgebras We have seen that to pick a single irreducible out of the space of sections Γ(Lλ) we need to somehow impose the condition that elements of negative root spaces, acting from the right, give zero. To get a geometric interpretation of what this condition means, we need to invoke complex geometry. To even define the negative root space, we need to begin by complexifying the Lie algebra X gC = tC ⊕ gα α∈R and then making a choice of positive roots R+ ⊂ R X gC = tC ⊕ (gα + g−α) α∈R+ Note that the complexified tangent space to G/T at the identity coset is X TeT (G/T ) ⊗ C = gα α∈R and a choice of positive roots gives a choice of complex structure on TeT (G/T ), with the holomorphic, anti-holomorphic decomposition X X TeT (G/T ) ⊗ C = TeT (G/T ) ⊕ TeT (G/T ) = gα ⊕ g−α α∈R+ α∈R+ While g/t is not a Lie algebra, + X − X n = gα, and n = g−α α∈R+ α∈R+ are each Lie algebras, subalgebras of gC since [n+, n+] ⊂ n+ (and similarly for n−). This follows from [gα, gβ] ⊂ gα+β The Lie algebras n+ and n− are nilpotent Lie algebras, meaning 1 Definition 1 (Nilpotent Lie Algebra). A Lie algebra g is called nilpotent if, for some finite integer k, elements of g constructed by taking k commutators are zero. In other words [g, [g, [g, [g, ··· ]]]] = 0 where one is taking k commutators.
    [Show full text]
  • Clifford Algebras and Lie Groups
    Clifford algebras and Lie groups Eckhard Meinrenken Lecture Notes, University of Toronto, Fall 2009. (Revised version of lecture notes from 2005) CHAPTER 1 Symmetric bilinear forms Throughout, K will denote a field of characteristic = 2. We are mainly interested in the cases K = R or C, and sometimes specialize6 to those two cases. 1. Quadratic vector spaces Suppose V is a finite-dimensional vector space over K. For any bilinear form B : V V K, define a linear map × → ♭ B : V V ∗, v B(v, ). → 7→ · The bilinear form B is called symmetric if it satisfies B(v1, v2)= B(v2, v1) ♭ ♭ for all v1, v2 V . Since dim V < this is equivalent to (B )∗ = B . The symmetric∈ bilinear form B is uniquely∞ determined by the associated quadratic form, QB(v)= B(v, v) by the polarization identity, (1) B(v, w)= 1 Q (v + w) Q (v) Q (w) . 2 B − B − B The kernel (also called radical ) of B is the subspace ker(B)= v V B(v, v ) = 0 for all v V , { ∈ | 1 1 ∈ } i.e. the kernel of the linear map B♭. The bilinear form B is called non- degenerate if ker(B) = 0, i.e. if and only if B♭ is an isomorphism. A vector space V together with a non-degenerate symmetric bilinear form B will be referred to as a quadratic vector space. Assume for the rest of this chapter that (V,B) is a quadratic vector space. Definition 1.1. A vector v V is called isotropic if B(v, v) = 0, and non-isotropic if B(v, v) = 0.
    [Show full text]