Logic and Operator Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
1. INTRODUCTION 1.1. Introductory remarks on supersymmetry. 1.2. Classical mechanics, the electromagnetic, and gravitational fields. 1.3. Principles of quantum mechanics. 1.4. Symmetries and projective unitary representations. 1.5. Poincar´esymmetry and particle classification. 1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl - equations. 1.7. Bosons and fermions. 1.8. Supersymmetry as the symmetry of Z2{graded geometry. 1.1. Introductory remarks on supersymmetry. The subject of supersymme- try (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymme- try was discovered in the early 1970's, and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincar´e,Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincar´esymmetry in the classification of elemen- tary particles, and permutation symmetry in the treatment of systems of identical particles. Supersymmetry is a new kind of symmetry which was discovered by the physicists in the early 1970's. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence1. -
Operator Theory in the C -Algebra Framework
Operator theory in the C∗-algebra framework S.L.Woronowicz and K.Napi´orkowski Department of Mathematical Methods in Physics Faculty of Physics Warsaw University Ho˙za74, 00-682 Warszawa Abstract Properties of operators affiliated with a C∗-algebra are studied. A functional calculus of normal elements is constructed. Representations of locally compact groups in a C∗-algebra are considered. Generaliza- tions of Stone and Nelson theorems are investigated. It is shown that the tensor product of affiliated elements is affiliated with the tensor product of corresponding algebras. 1 0 Introduction Let H be a Hilbert space and CB(H) be the algebra of all compact operators acting on H. It was pointed out in [17] that the classical theory of unbounded closed operators acting in H [8, 9, 3] is in a sense related to CB(H). It seems to be interesting to replace in this context CB(H) by any non-unital C∗- algebra. A step in this direction is done in the present paper. We shall deal with the following topics: the functional calculus of normal elements (Section 1), the representation theory of Lie groups including the Stone theorem (Sections 2,3 and 4) and the extensions of symmetric elements (Section 5). Section 6 contains elementary results related to tensor products. The perturbation theory (in the spirit of T.Kato) is not covered in this pa- per. The elementary results in this direction are contained the first author’s previous paper (cf. [17, Examples 1, 2 and 3 pp. 412–413]). To fix the notation we remind the basic definitions and results [17]. -
Algebras in Which Every Subalgebra Is Noetherian
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 2983–2990 S 0002-9939(2014)12052-1 Article electronically published on May 21, 2014 ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD (Communicated by Birge Huisgen-Zimmermann) Abstract. We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property. 1. Introduction Throughout this paper k will denote an algebraically closed field and all algebras will be k-algebras. It is not hard to show that if C is a commutative k-algebra with the property that every subalgebra is finitely generated (or noetherian), then C must be of Krull dimension at most one. (See Section 3 for one possible proof.) The aim of this paper is to show that this property holds more generally in the noncommutative universe. Before stating the result we need some notation. Let X be a projective variety ∗ with invertible sheaf M and automorphism σ and write Mn = M⊗σ (M) ···⊗ n−1 ∗ (σ ) (M). Then the twisted homogeneous coordinate ring of X with respect to k M 0 M this data is the -algebra B = B(X, ,σ)= n≥0 H (X, n), under a natu- ral multiplication. This algebra is fundamental to the theory of noncommutative algebraic geometry; see for example [ATV1, St, SV]. In particular, if S is the 3- dimensional Sklyanin algebra, as defined for example in [SV, Example 8.3], then B(E,L,σ)=S/gS for a central element g ∈ S and some invertible sheaf L over an elliptic curve E.WenotethatS is a graded ring that can be regarded as the “co- P2 P2 ordinate ring of a noncommutative ” or as the “coordinate ring of nc”. -
2 Hilbert Spaces You Should Have Seen Some Examples Last Semester
2 Hilbert spaces You should have seen some examples last semester. The simplest (finite-dimensional) ex- C • A complex Hilbert space H is a complete normed space over whose norm is derived from an ample is Cn with its standard inner product. It’s worth recalling from linear algebra that if V is inner product. That is, we assume that there is a sesquilinear form ( , ): H H C, linear in · · × → an n-dimensional (complex) vector space, then from any set of n linearly independent vectors we the first variable and conjugate linear in the second, such that can manufacture an orthonormal basis e1, e2,..., en using the Gram-Schmidt process. In terms of this basis we can write any v V in the form (f ,д) = (д, f ), ∈ v = a e , a = (v, e ) (f , f ) 0 f H, and (f , f ) = 0 = f = 0. i i i i ≥ ∀ ∈ ⇒ ∑ The norm and inner product are related by which can be derived by taking the inner product of the equation v = aiei with ei. We also have n ∑ (f , f ) = f 2. ∥ ∥ v 2 = a 2. ∥ ∥ | i | i=1 We will always assume that H is separable (has a countable dense subset). ∑ Standard infinite-dimensional examples are l2(N) or l2(Z), the space of square-summable As usual for a normed space, the distance on H is given byd(f ,д) = f д = (f д, f д). • • ∥ − ∥ − − sequences, and L2(Ω) where Ω is a measurable subset of Rn. The Cauchy-Schwarz and triangle inequalities, • √ (f ,д) f д , f + д f + д , | | ≤ ∥ ∥∥ ∥ ∥ ∥ ≤ ∥ ∥ ∥ ∥ 2.1 Orthogonality can be derived fairly easily from the inner product. -