Temporal Changes in Abundance of Harbor Porpoise Inhabiting The

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Changes in Abundance of Harbor Porpoise Inhabiting The 242 Abstract—Abundance of harbor por- Temporal changes in abundance of harbor poise (Phocoena phocoena) was es- timated from data collected during porpoise (Phocoena phocoena) inhabiting the vessel surveys conducted through- out the inland waters of Southeast inland waters of Southeast Alaska Alaska. Line-transect methods were used during 18 seasonal surveys Marilyn E. Dahlheim (contact author)1 spanning 22 years (1991–2012). Es- 1, 2 timates were derived from summer Alexandre N. Zerbini surveys only because of the broader Janice M. Waite1 spatial coverage and greater number Amy S. Kennedy1 of surveys during this season than during other seasons. Porpoise abun- Email address for contact author: [email protected] dance varied when different periods were compared (i.e., 1991–1993, 1 2006–2007, and 2010–2012); how- National Marine Mammal Laboratory ever, persistent areas of high por- Alaska Fisheries Science Center poise densities occurred in Glacier National Marine Fisheries Service, NOAA Bay and Icy Strait, and off the town 7600 Sand Point Way NE of Wrangell and Zarembo Island. Seattle, Washington 98115-6349 Overall abundance of harbor por- 2 Cascadia Research Collective poise significantly declined from the 218 ½ West Fourth Avenue early 1990s (N=1076, 95% confidence Olympia, Washington 98501 interval [CI]=910–1272) to the mid- 2000s (N=604, 95% CI=468–780). This downward trend was followed by a significant increase in the early 2010s (N=975, 95% CI=857–1109) when abundance rose to levels simi- Harbor porpoise (Phocoena phocoena) the Southeast Alaska stock—occur- lar to those observed 20 years ear- are distributed throughout Alaska ring from Dixon Entrance (54°30′N; lier. Potential factors that could con- waters (Fiscus et al.1; Leatherwood 134°00 W) to Cape Suckling (60°00 N; tribute to the downward trend were ′ ′ 2 examined. The 2 regions with high and Reeves, 1978; Leatherwood et al. ; 144°00′W), 2) the Gulf of Alaska 3,4 densities of harbor porpoise (i.e., Lowry et al. ; Dahlheim et al., 2000, stock—occurring from Cape Suck- Glacier Bay and Icy Strait as well as 2009; Hobbs and Waite, 2010), com- ling to Unimak Pass, and 3) the Ber- Wrangell and Zarembo islands), that monly inhabiting waters less than ing Sea stock—occurring throughout were consistently occupied by this 100 m deep (Barlow, 1988; Carretta the Aleutian Islands and all waters species, and the different trend val- et al., 2001; Hobbs and Waite, 2010). north of Unimak Pass (Allen and An- ues of these 2 regions indicate that Currently, 3 stocks of harbor por- gliss, 2012). The boundaries of these some fine-scale population structur- poise are recognized in Alaska: 1) 3 stocks are based on geography and ing may exist for harbor porpoise in- habiting the inland waters of South- 1 Fiscus, C. H., H. W. Braham, R. W. Mer- 3 Lowry, L. F., K. J. Frost, and J. J. Burns. east Alaska. cer, R. D. Everitt, B. D. Krogman, P. D. 1982. Investigations of marine mam- McQuire, C. E. Peterson, R. M. Sonntag, mals in the coastal zone of western Alas- and D. Withrow. 1976. Seasonal dis- ka during summer and autumn. Annu- tribution and relative abundance of ma- al report on contract NA 81 RAC0050, rine mammals in the Gulf of Alaska, 238 submitted to NOAA, Outer Continental p. Northwest Fish. Sci. Cent. Processed Shelf Environmental Assessment Pro- Rep., [Available from Alaska Fish. Sci. gram, Juneau, Alaska, 37 p. [Available Cent., Natl. Mar. Fish. Serv., 7600 Sand from the Natl Mar. Mamm. Lab., Alaska Manuscript submitted 14 May 2014. Point Way NE., Seattle, WA 98115.] Fish. Sci. Cent.,7600 Sand Point Way Manuscript accepted 25 March 2015. 2 Leatherwood, S., A. E. –Bowles, and R. NE., Seattle, WA 98115.] Fish. Bull 113:242–255 (2015). R. Reeves. 1983. Endangered whales 4 Lowry, L. F., K. J. Frost, D. G. Calkins, Online publication date: 14 April 2015. of the eastern Bering Sea and Shelikof G. L. Swartzman, and S. Hills. 1982. doi: 10.7755/FB.113.3.2 Strait, Alaska. Results of aerial surveys Feeding habits, food requirements, and April 1982 through April 1983 with notes status of Bering Sea marine mam- on other marine mammals seen. Hubbs mals. Vol. 1. Final report submitted The views and opinions expressed or Sea World Research Institute Technical to the North Pacific Fishery Manage- implied in this article are those of the Report No. 83-159, 315 p. [Available ment Council, Anchorage, Alaska, 292 p. author (or authors) and do not necessarily from the Natl. Mar. Mamm. Lab., Alas- [Available from the Natl. Mar. Mamm. reflect the position of the National ka Fish. Sci. Cent.,7600 Sand Point Way Lab., Alaska Fish. Sci. Cent.,7600 Sand Marine Fisheries Service, NOAA. NE., Seattle, WA 98115.] Point Way NE., Seattle, WA 98115.] Dahlheim et al.: Temporal changes in abundance of Phocoena phocoena inhabiting the inland waters of Southeast Alaska 243 perceived areas of low porpoise density, but to date height of 5.9 m. A line-transect method was employed there has been no analysis of genetic or individual to survey predetermined tracklines. At the start of this movement to assess the validity of these designations. study, distribution, habitat preferences, and seasonal The preference of harbor porpoise for shallower wa- occurrence of harbor porpoise within the study area ters makes them highly vulnerable to incidental cap- were unknown. Tracklines were designed throughout ture during net-fishing operations (Jefferson and Curry, the study area with either a zig-zag or straight-line 1994; Read, 1994; Barlow et al., 1995). The nature and path, depending upon the size of the different areas. magnitude of incidental takes are currently unknown The survey was designed to include all major water- but could be significant in some gill-net and purse- ways and a selection of smaller bays and inlets to ex- seine fisheries targeting Alaska salmon (Oncorhynchus amine both deepwater and nearshore habitats through- spp.) and Pacific herring (Clupea pallasi). out the entire study area. The same trackline design Obtaining abundance estimates for harbor porpoise, was employed for all surveys completed between 1991 a small, inconspicuous cetacean species, is challenging. and 1993, although alterations were made during some For example, the ability to detect harbor porpoise is surveys depending on weather and other unforeseen highly sensitive to environmental conditions; surveys circumstances (e.g., mechanical breakdowns or engage- should be limited to relatively calm sea states and ment in rescue operations). good lighting conditions. Despite such challenges, es- During line-transect surveys, sighting data were col- timates of both density and abundance for this species lected by a team of 3 observers, with 1 observer at each do exist for Alaska waters. Taylor and Dawson (1984) of 3 stations: starboard, port, and recorder station. In reported on a shore-based study that yielded density the early 1990s, the total number of biologists partici- estimates for Glacier Bay National Park and Preserve. pating in the survey was 6; therefore, a full observer In 1991–1993, and again in 1997–1999, aerial surveys rotation took 2 h, with each observer spending 40 min of coastal waters in Alaska, ranging from the south- at each station or watch, followed by a 2-h rest period eastern Bering Sea to Dixon Entrance, yielded more for each observer after each full rotation of watches. recent abundance estimates (Dahlheim et al., 2000; Schedules for observer rotations were selected random- Hobbs and Waite, 2010). ly each day. In this study, we report the results from dedicated Port and starboard observers used 7×50 Fujinon5 line-transect surveys conducted to determine the den- binoculars (model 56A2, Fujifilm Holdings Corp., To- sity and abundance of harbor porpoise in Southeast kyo) to search from 0° (at the ship’s bow) to 90°. Scan- Alaska over a 22-year period from 1991 through 2012. ning techniques were standardized with nearly 32 min The objectives of these surveys were 1) to obtain rela- (or 80%) of the 40-min watch spent scanning with the tive abundance estimates of harbor porpoise within binoculars and about 8 min spent scanning with the the inland waterways of Southeast Alaska, 2) to in- naked eye. To reduce observer fatigue, binoculars were vestigate porpoise density and abundance by different supported by adjustable metal poles that were either strata (i.e., smaller regions), 3) to establish a baseline handheld or rested on the observer’s hips. When not for detecting changes in harbor porpoise abundance entering data, the recorder searched for porpoise by through time, and 4) to report on significant insights scanning both sides of the ship from the bridge with on this species as a result of these investigations. the naked eye. Binoculars were only used by the re- corder to confirm sighting identifications and numbers. Sightings made by the officers, crew, and off-watch ob- Materials and methods servers were recorded as “off effort” and were not used in calculations of density estimates. Study area A GPS unit was connected directly to a portable computer on the bridge. The date, time, and position The study area included the inland waters of Southeast of the ship were automatically entered into a data file Alaska (Fig. 1). Surveys covered all major channels or every 10 min and whenever data were entered by the bays from Juneau to Ketchikan: Lynn Canal, Icy Strait, recorder. Search effort was recorded on the computer Glacier Bay, Cross Sound, Chatham Strait, Stephens by marking the beginning and end of each transect. Passage, Frederick Sound, Sumner Strait, and Clarence Beaufort sea state, a weather description (rain and Strait. When time permitted or weather precluded the fog), a visibility index, and observer positions (port, re- surveying of major channels, many adjacent smaller corder, and starboard) were also entered.
Recommended publications
  • Sockeye Salmon, Oncorhynchus Nerka, Catches in Southeast Alaska, Based on Incidence of Allozyme Variants, Freshwater Ages, and a Brain-Tissue Parasite
    Stock Composition of Some Sockeye Salmon, Oncorhynchus nerka, Catches in Southeast Alaska, Based on Incidence of Allozyme Variants, Freshwater Ages, and a Brain-Tissue Parasite Item Type monograph Authors Pella, Jerome; Masuda, Michele; Guthrie III, Charles; Kondzela, Christine; Gharrett, Anthony J.; Moles, Adam; Winans, Gary Publisher NOAA/National Marine Fisheries Service Download date 09/10/2021 14:19:18 Link to Item http://hdl.handle.net/1834/20475 NOAA Technical Report NMFS 132 January 1998 Stock Composition of Some Sockeye Salmon, Oncorhynchus nerka, Catches in Southeast Alaska, Based on Incidence of Allozyme Variants, Freshwater Ages, and a Brain-Tissue Parasite Jerome Pella Michele Masuda Charles Guthrie III Christine Kondzela Anthony Gharrett Adam Moles Gary Winans U.S. Department of Commerce u.s. DEPARTMENT OF COMMERCE WILLIAM M. DALEY NOAA SECRETARY National Oceanic and Atmospheric Adn:llnistration Technical D. James Baker Under Secretary for Oceans and Atmosphere Reports NMFS National Marine Fisheries Service Technical Reports of the Fishery Bulletin Rolland A. Schmitten Assistant Administrator for Fisheries Scientific Editor Dr. John B. Pearce Northeast Fisheries Science Center National Marine Fisheries Service, NOAA 166 Water Street Woods Hole, Massachusetts 02543-1097 Editorial Committee Dr. Andrew E. Dizon National Marine Fisheries Service Dr. Linda L. Jones National Marine Fisheries Service Dr. Richard D. Methot National Marine Fisheries Service Dr. Theodore W. Pietsch University of Washington Dr. Joseph E. Powers National Marine Fisheries Service Dr. Tim. D. Stnith National Marine Fisheries Service Managing Editor Shelley E. Arenas Scientific Publications Office National Marine Fisheries Service, NOAA 7600 Sand Point Way N.E. Seattle, Washington 98115-0070 The NOAA Technical Report NMFS (ISSN 0892-8908) series is published by the Scientific Publications Office, Na­ tional Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, WA The NOAA Technical Report NMFS series of the Fishery Bulletin carries peer-re­ 98115-0070.
    [Show full text]
  • MS Watersheds 12 Digit Shapefile
    MS Watersheds 12 Digit Shapefile Tags 16-digit, Hydrologic Unit Code, Region, US, 4-digit, HUC, United States, Watershed Boundary Dataset, 2-digit, Basin, 10-digit, Hydrologic Units, Sub-basin, Watershed, WBD, 6-digit, inlandWaters, Sub-region, Subwatershed, 12-digit, 14-digit, 8-digit Summary The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. **** NOTE - MARIS Staff created a Mississippi collection from various regions in January 2019 **** Description The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency.
    [Show full text]
  • Temporal Changes in Abundance of Harbor Porpoise (Phocoena
    242 Abstract—Abundance of harbor por- Temporal changes in abundance of harbor poise (Phocoena phocoena) was es- timated from data collected during porpoise (Phocoena phocoena) inhabiting the vessel surveys conducted through- out the inland waters of Southeast inland waters of Southeast Alaska Alaska. Line-transect methods were used during 18 seasonal surveys Marilyn E. Dahlheim (contact author)1 spanning 22 years (1991–2012). Es- 1, 2 timates were derived from summer Alexandre N. Zerbini surveys only because of the broader Janice M. Waite1 spatial coverage and greater number Amy S. Kennedy1 of surveys during this season than during other seasons. Porpoise abun- Email address for contact author: [email protected] dance varied when different periods were compared (i.e., 1991–1993, 1 2006–2007, and 2010–2012); how- National Marine Mammal Laboratory ever, persistent areas of high por- Alaska Fisheries Science Center poise densities occurred in Glacier National Marine Fisheries Service, NOAA Bay and Icy Strait, and off the town 7600 Sand Point Way NE of Wrangell and Zarembo Island. Seattle, Washington 98115-6349 Overall abundance of harbor por- 2 Cascadia Research Collective poise significantly declined from the 218 ½ West Fourth Avenue early 1990s (N=1076, 95% confidence Olympia, Washington 98501 interval [CI]=910–1272) to the mid- 2000s (N=604, 95% CI=468–780). This downward trend was followed by a significant increase in the early 2010s (N=975, 95% CI=857–1109) when abundance rose to levels simi- Harbor porpoise (Phocoena phocoena) the Southeast Alaska stock—occur- lar to those observed 20 years ear- are distributed throughout Alaska ring from Dixon Entrance (54°30′N; lier.
    [Show full text]
  • By S.M. Karl and R.D. Koch
    DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP MF-197C C U.S. GEOLOGICAL SURVEY MAPS AND PRELIMINARY INTERPRETATION OF ANOMALOUS ROCK GEOCHEMICAL DATA FROM THE PETERSBURG QUADRANGLE, AND PARTS OF THE PORT ALEXANDER, SITKA, AND SUMDUM QUADRANGLES, SOUTHEASTERN ALASKA By S.M. Karl and R.D. Koch INTRODUCTION flysch, volcanic rocks, and melange that includes fault- bounded blocks of older sedimentary and volcanic rocks. Statistical analyses of minor- and trace-element The eastern part of the study area comprises the geochemical data for 6,974 rock samples from the Mainland belt of Brew and others (1984), which include" Petersburg quadrangle and minor parts of the Port the Taku and Tracy Arm terranes of Berg and others Alexander, Sitka, and Sumdum quadrangles (hereafter (1978). According to Brew and others (1984), rocks of referred to as the Petersburg study area) identified 887 the Taku and Tracy Arm terranes may include samples with anomalously high concentrations of one or metamorphosed equivalents of the Alexander terrane more elements. This report includes a list of the 887 rocks. The country rocks of the Mainland belt increase samples (table 1), histograms showing the distribution of in metamorphic grade from west to east, to as high as chemical values (see fig. 2), a brief description of the amphibolite facies, and are intruded by various igneous geologic context and distribution of the samples, a map components of the Coast plutonic-metamorphic complex of bedrock geochemical groups (sheet 1), and 12 maps of Brew and Ford (1984) (sheet 1). showing the locations of samples that have anomalous The Coast plutonic-metamorphic complex includes amounts of precious metals, base metals, and selected rare the metamorphosed equivalents of the Paleozoic and metals (sheets 2-7).
    [Show full text]
  • Featured Species-Associated Forest Habitats: Boreal Forest and Coastal Temperate Forest
    Appendix 5.1, Page 1 Appendix 5. Key Habitats of Featured Species Appendix 5.1 Forest Habitats Featured Species-Associated Forest Habitats: Boreal Forest and Coastal Temperate Forest There are approximately 120 million acres of forestland (land with > 10% tree cover) in Alaska (Hutchison 1968). That area can be further classified depending on where it occurs in the state. The vast majority of forestland, about 107 million acres, occurs in Interior Alaska and is classified as “boreal forest.” About 13 million acres of forest occurs along Alaska’s southern coast, including the Kodiak Archipelago, Prince William Sound, and the islands and mainland of Southeast Alaska. This is classified as coastal temperate rain forest. The Cook Inlet region is considered to be a transition zone between the Interior boreal forest and the coastal temperate forest. For a map showing Alaska’s land status and forest types, see Figure 5.1 on page 2. Boreal Forest The boreal zone is a broad northern circumpolar belt that spans up to 10° of latitude in North America. The boreal forest of North America stretches from Alaska to the Rocky Mountains and eastward to the Atlantic Ocean and occupies approximately 28 % of the continental land area north of Mexico and more than 60 % of the total area of the forests of Canada and Alaska (Johnson et al. 1995). Across its range, coniferous trees make up the primary component of the boreal forest. Dominant tree species vary regionally depending on local soil conditions and variations in microclimate. Broadleaved trees, such as aspen and poplar, occur in Boreal forest, Nabesna D.
    [Show full text]
  • HARBOR PORPOISE (Phocoena Phocoena): Southeast Alaska Stock
    NOAA-TM-AFSC-404 M.M. Muto et al. 2020 Revised 12/30/2019 HARBOR PORPOISE (Phocoena phocoena): Southeast Alaska Stock NOTE – December 2015: In areas outside of Alaska, studies of harbor porpoise distribution have indicated that stock structure is likely more fine-scaled than is reflected in the Alaska Stock Assessment Reports. No data are available to define stock structure for harbor porpoise on a finer scale in Alaska. However, based on comparisons with other regions, it is likely that several regional and sub-regional populations exist. Should new information on harbor porpoise stocks become available, the harbor porpoise Stock Assessment Reports will be updated. STOCK DEFINITION AND GEOGRAPHIC RANGE In the eastern North Pacific Ocean, harbor porpoise range from Point Barrow and offshore areas of the Chukchi Sea, along the Alaska coast, and down the west coast of North America to Point Conception, California (Gaskin 1984, Christman and Aerts 2015). Harbor porpoise primarily frequent the coastal waters of the Gulf of Alaska and Southeast Alaska (Dahlheim et al. 2000, 2009), typically occurring in waters less than 100 m deep; however, occasionally they occur in deeper waters (Hobbs and Waite 2010). Within the inland waters of Southeast Alaska, harbor porpoise distribution is clumped with greatest densities observed in the Glacier Bay/Icy Strait region and near Zarembo and Wrangell Islands and the adjacent waters of Sumner Strait (Dahlheim et al. 2009, 2015). The average density of harbor porpoise in Alaska appears to be less than that reported off the west coast of Figure 1. Approximate distribution of harbor porpoise in the continental U.S., although areas of high Alaska waters: crosshatched area - Southeast Alaska stock; densities do occur in Glacier Bay and the striped area - Gulf of Alaska stock; dark shaded area - Bering adjacent waters of Icy Strait, Yakutat Bay, the Sea stock.
    [Show full text]
  • Coastal Habitat Mapping Program
    Coastal Habitat Mapping Program Southeast Alaska Data Summary Report ShoreZone October 2011 Prepared for: The ..-_ The Nature Conservancy ature.., conservan Coastal & Ocean MARINE RESEARCH LTD Resources Inc. On the Cover: South Coronation Island Sawyer Glacier, Tracy Arm North Zarembo Island Juneau, AK CORI Project: 10-17 Oct 2011 ShoreZone Coastal Habitat Mapping Data Summary Report 2004-2010 Survey Area, Southeast Alaska D State of Alaska Prepared for: NOAA National Marine Fisheries Service, Alaska Region The Nature Conservancy Prepared by: COASTAL & OCEAN RESOURCES INC ARCHIPELAGO MARINE RESEARCH LTD 759A Vanalman Ave., Victoria BC V8Z 3B8 Canada 525 Head Street, Victoria BC V9A 5S1 Canada (250) 658-4050 (250) 383-4535 www.coastalandoceans.com www.archipelago.ca October 2011 SE Alaska Summary (TNC) 2 SUMMARY ShoreZone is a coastal habitat mapping and classification system in which georeferenced aerial imagery is collected specifically for the interpretation and integration of geological and biological features of the intertidal zone and nearshore environment. The mapping methodology is summarized in Harney et al (2008). This interim data summary report provides information on geomorphic and biological features of 28,595 km of shoreline mapped in 2004-2010 surveys of Southeast Alaska. There is approximately 1,100 km of unmapped shoreline in Glacier Bay. The habitat inventory is comprised of 88,704 along-shore segments (units), averaging 322 m in length. Organic shorelines (such as estuaries) are mapped along 3,388 km (12%) of the study area. Bedrock shorelines (BC Classes 1-5) comprise 4,947 km (17%) of mapped shorelines. Of these, steep rock cliffs are the most common mapped along 3,682 km (13%) of the shoreline.
    [Show full text]
  • Coastal Impressions
    CoastalA Photographic Journey Impressions along Alaska’s Gulf Coast i Exhibit compiled by Susan Saupe, Mandy Lindeberg, and Dr. G. Carl Schoch Photographs selected by Mandy Lindeberg and Susan Saupe Photo editing and printing by Mandy Lindeberg Photo annotations by Dr. G. Carl Schoch Booklet prepared by Susan Saupe with design services by Fathom Graphics, Anchorage Photo mounting and laminating by Digital Blueprint, Anchorage Digital Maps for Exhibit and Booklet prepared by GRS, Anchorage January 2012 Second Printing November 2012 Exhibit sponsored by Cook Inlet RCAC and developed in partnership with NMFS AFSC Auke Bay Laboratories, and Alaska ShoreZone Program. ii Acknowledgements This exhibit would not exist without the vision of Dr. John Harper of Coastal and Ocean Resources, Inc. (CORI), whose role in the development and continued refinement of ShoreZone has directly led to habitat data and imagery acquisition for every inch of coastline between Oregon and the Alaska Peninsula. Equally important, Mary Morris of Archipelago Marine Research, Inc. (ARCHI) developed the biological component to ShoreZone, participated in many of the Alaskan surveys, and leads the biological habitat mapping efforts. CORI and ARCHI have provided experienced team members for aerial survey navigation, imaging, geomorphic and biological narration, and habitat mapping, each of whom contributed significantly to the overall success of the program. We gratefully acknowledge the support of organizations working in partnership for the Alaska ShoreZone effort, including over 40 local, state, and federal agencies and organizations. A full list of partners can be seen at www.shorezone.org. Several organizations stand out as being the earliest or staunchest supporters of a comprehensive Alaskan ShoreZone program.
    [Show full text]
  • Mammals and Amphibians of Southeast Alaska
    8 — Mammals and Amphibians of Southeast Alaska by S. O. MacDonald and Joseph A. Cook Special Publication Number 8 The Museum of Southwestern Biology University of New Mexico Albuquerque, New Mexico 2007 Haines, Fort Seward, and the Chilkat River on the Looking up the Taku River into British Columbia, 1929 northern mainland of Southeast Alaska, 1929 (courtesy (courtesy of the Alaska State Library, George A. Parks Collec- of the Alaska State Library, George A. Parks Collection, U.S. tion, U.S. Navy Alaska Aerial Survey Expedition, P240-135). Navy Alaska Aerial Survey Expedition, P240-107). ii Mammals and Amphibians of Southeast Alaska by S.O. MacDonald and Joseph A. Cook. © 2007 The Museum of Southwestern Biology, The University of New Mexico, Albuquerque, NM 87131-0001. Library of Congress Cataloging-in-Publication Data Special Publication, Number 8 MAMMALS AND AMPHIBIANS OF SOUTHEAST ALASKA By: S.O. MacDonald and Joseph A. Cook. (Special Publication No. 8, The Museum of Southwestern Biology). ISBN 978-0-9794517-2-0 Citation: MacDonald, S.O. and J.A. Cook. 2007. Mammals and amphibians of Southeast Alaska. The Museum of Southwestern Biology, Special Publication 8:1-191. The Haida village at Old Kasaan, Prince of Wales Island Lituya Bay along the northern coast of Southeast Alaska (undated photograph courtesy of the Alaska State Library in 1916 (courtesy of the Alaska State Library Place File Place File Collection, Winter and Pond, Kasaan-04). Collection, T.M. Davis, LituyaBay-05). iii Dedicated to the Memory of Terry Wills (1943-2000) A life-long member of Southeast’s fauna and a compassionate friend to all.
    [Show full text]
  • Coastal Habitat Mapping Program
    Coastal Habitat Mapping Program Southeast Alaska Data Summary Report ShoreZone October 2011 Prepared for: The Nature Conservancy On the Cover: South Coronation Island Sawyer Glacier, Tracy Arm North Zarembo Island Juneau, AK CORI Project: 10-17 Oct 2011 ShoreZone Coastal Habitat Mapping Data Summary Report 2004-2010 Survey Area, Southeast Alaska Prepared for: NOAA National Marine Fisheries Service, Alaska Region The Nature Conservancy Prepared by: COASTAL & OCEAN RESOURCES INC ARCHIPELAGO MARINE RESEARCH LTD 759A Vanalman Ave., Victoria BC V8Z 3B8 Canada 525 Head Street, Victoria BC V9A 5S1 Canada (250) 658-4050 (250) 383-4535 www.coastalandoceans.com www.archipelago.ca October 2011 SE Alaska Summary (TNC) 2 SUMMARY ShoreZone is a coastal habitat mapping and classification system in which georeferenced aerial imagery is collected specifically for the interpretation and integration of geological and biological features of the intertidal zone and nearshore environment. The mapping methodology is summarized in Harney et al (2008). This interim data summary report provides information on geomorphic and biological features of 28,595 km of shoreline mapped in 2004-2010 surveys of Southeast Alaska. There is approximately 1,100 km of unmapped shoreline in Glacier Bay. The habitat inventory is comprised of 88,704 along-shore segments (units), averaging 322 m in length. Organic shorelines (such as estuaries) are mapped along 3,388 km (12%) of the study area. Bedrock shorelines (BC Classes 1-5) comprise 4,947 km (17%) of mapped shorelines. Of these, steep rock cliffs are the most common mapped along 3,682 km (13%) of the shoreline. A little less than half of the mapped coastal environment is characterized as combinations of rock and sediment shorelines (BC Classes 6-20): 11,747 km (41%).
    [Show full text]
  • U.S. Department of the Interior U.S. Geological Survey Geologic Division
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY GEOLOGIC DIVISION [U.S.G.S. R/V Don J. Miller II] COMBINED DESCRIPTION OF MAP UNITS AND CORRELATION OF MAP UNITS FOR THE PETERSBURG-WRANGELL AREA 1:63,360-SCALE GEOLOGIC MAPS, SOUTHEASTERN ALASKA Open-File Report 97-156-O By David A. Brew and Donald J. Grybeck This report has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Post-technical-review version 98.01.12.0930 U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Combined Description of Map Units and Correlation of Map Units for the Petersburg-Wrangell Area 1:63,360-Scale Geologic Maps, Southeastern Alaska By David A. Brew1 and Donald J. Grybeck2 Open-File Report 97-156-O This report has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Research Geologist emeritus USGS, MS 904 Menlo Park, California 94025 2 Research Geologist USGS, 4200 University Drive Anchorage, A La ska 99508 CONTENTS Page Introduction 3 Sketch of Geologic and Tectonic Setting 5 Brief Description of Map Units 8 Description of Map Units 1 5 Acknowledgements 7 8 Cited and Selected References 7 9 Indices Alphabetical Index of Map Symbols, giving their unit names and page numbers of their descriptions 97 Alphabetical Index of Unit Names, giving the page numbers of their descriptions and their map symbols 102 LIST OF FIGURES Figure 1.
    [Show full text]
  • S Denver Museum of Nature & Science Reports
    DENVER MUSEUM OF NATURE & SCIENCE REPORTS DENVER MUSEUM OF NATURE & SCIENCE REPORTS THE FORTUNATE LIFE OF A MUSEUM NATURALIST: ALFRED M. BAILEY BAILEY ALFRED M. NATURALIST: LIFE OF A MUSEUM THE FORTUNATE NUMBER 13, MARCH 10, 2019 WWW.DMNS.ORG/SCIENCE/MUSEUM-PUBLICATIONS Denver Museum of Nature & Science Reports 2001 Colorado Boulevard (Print) ISSN 2374-7730 Denver, CO 80205, U.S.A. Denver Museum of Nature & Science Reports (Online) ISSN 2374-7749 Frank Krell, PhD, Editor and Production VOL. 2 VOL. DENVER MUSEUM OF NATURE & SCIENCE & SCIENCE OF NATURE DENVER MUSEUM Cover photo: Russell W. Hendee and A.M. Bailey in Wainwright, Alaska, 1921. Photographer unknown. DMNS No. IV.BA21-007. The Denver Museum of Nature & Science Reports (ISSN 2374-7730 [print], ISSN 2374-7749 [online]) is an open- access, non peer-reviewed scientifi c journal publishing papers about DMNS research, collections, or other Museum related topics, generally authored or co-authored The Fortunate Life of a Museum Naturalist: by Museum staff or associates. Peer review will only be arranged on request of the authors. REPORTS Alfred M. Bailey The journal is available online at science.dmns.org/ 10, 2019 • NUMBER 13 MARCH Volume 2—Alaska, 1919–1922 museum-publications free of charge. Paper copies are exchanged via the DMNS Library exchange program ([email protected]) or are available for purchase from our print-on-demand publisher Lulu (www.lulu.com). Kristine A. Haglund, Elizabeth H. Clancy DMNS owns the copyright of the works published in the & Katherine B. Gully (Eds) Reports, which are published under the Creative Commons Attribution Non-Commercial license.
    [Show full text]