Quantitative Fluorescence Microscopy of Protein Dynamics in Living Cells

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Fluorescence Microscopy of Protein Dynamics in Living Cells Quantitative Fluorescence Microscopy of Protein Dynamics in Living Cells Shehu Mustapha Ibrahim The work described in this thesis was performed at the Department of Pathology of the Josephine Nefkens Institute, Erasmus MC, Rotterdam and Department of Biophysics and Cell Biology, University of Debrecen, Medical and Health Science Centre, Hungary. Quantitative Fluorescence Microscopy of Protein Dynamics in Living Cells Kwantitatieve Fluorescentiemicroscopie van Eiwitdynamiek in Levende Cellen Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 21 december 2006 om 09:00 uur door Shehu Mustapha Ibrahim Geboren te Ilorin, Nigeria Promotiecommissie Promotor: Prof.dr. J.H.J. Hoeijmakers Overige leden: Prof.dr.ir. J. Trapman Prof.dr. J. Szöllősi Dr. R. Krams Copromotores: Dr. A.B. Houtsmuller Dr. G. Vereb Contents Abbreviations 7 Chapter 1 General Introduction 9 Chapter 2 Light Driven Dynamics of GFP Fluorescence 49 Emission in Living Cells Chapter 3 Dynamics of Nuclear Proteins: 73 Complementarities of Fluorescence Correlation Microscopy and Photobleaching in Intra-Cellular Mobility Measurements Chapter 4 In the Absence of DNA Damage the Nuclear Mobility 109 of Most Nucleotide Excision Factors is Mainly Determined by their Molecular Size Chapter 5 Recruitment of the Nucleotide Excision 131 Endonuclease XPG to sites of UV-induced Damage Depends on Functional TFIIH Chapter 6 Translational Mobility of EGF Receptor Fusion 169 Proteins over Short and Long Distances – Complementarity of Fluorescence Correlation Microscopy and FRAP in Cellular Diffusion Measurements Chapter 7 Cholesterol-dependent Clustering of IL-2Rα 223 and its Colocalization with HLA and CD48 on T Lymphoma Cells suggests their Functional Association with Lipid Summary 249 Samenvating 253 Acknowledgements 257 List of publications 259 Curriculum Vitae 261 Abbreviations AOM Acousto-optical modulator AR Androgen receptor ARE Androgen response element BCIP Bromo-4-chloro-3-indolyl phosphate CAF I Chromatin assembly factor I CHO Chinese hamster ovary CLSM Confocal laser scanning microscopes CPD Cyclobutane pyrimidine dimers CS Cockayne syndrome DBD DNA binding domain DBD DNA-binding domain DM Dichroic mirror EBFP Enhanced blue fluorescent protein ECFP Enhanced cyan fluorescent protein EGF Epidermal growth factor EGFP Enhanced green fluorescent protein EGFR Epidermal growth factor receptor ERCC Excision repair cross complementing protein ESPT Excited state proton transfer EYFP Enhanced yellow fluorescent protein FCM Fluorescence correlation microscopy FCS Fluorescence correlation spectroscopy FP Fusion protein FRAP Fluorescence recovery after photobleaching FRET Fluorescence resonance energy transfer FWHM Full width half-maximum GFP Green fluorescence protein GG-NER Global genome NER IC Internal conversion IL-2 Interleukin-2 IL-2R Interleukin-2 receptor ISC Intersystem crossing LBD ligand-binding domain NA Numerical aperture NBT Nitro blue tetrazolium NER Nucleotide excision repair NLS Nuclear localisation signal NTD N-terminal transactivation domain PBS Phosphate-buffered saline PMT Photomultiplier tube RCFPs Reef coral fluorescent proteins ROI Region of interest RPA Replication Protein A RT Room temperature S0 Electronic ground state S1, S2 and so on Singlet excited energy states SNOM Scanning near-field optical microscopy SR Steroid receptor T1 Excited triplet state TC-NER Transcription-coupled NER TIR Total internal reflection TrfR Transferrin receptor TTD Trichothiodystrophy UV Ultraviolet wt-GFP Wild-type green fluorescent protein XP Xeroderma pigmentosum XPA Xeroderma pigmentosum A XPB Xeroderma pigmentosum B XPC Xeroderma pigmentosum C XPD Xeroderma pigmentosum D XPE Xeroderma pigmentosum E XPF Xeroderma pigmentosum F XPG Xeroderma pigmentosum G XPV Xeroderma pigmentosum V Chapter 1 General Introduction In fluorescence microscopy, the ability of fluorescent molecules to emit light of specific wavelengths following the absorption of light of shorter wavelengths is utilized to observe the molecules directly or to indicate the position of fluorescently tagged target molecules in a cell. Recent advances in laser and computer technologies have lead to the availability of commercial confocal laser scanning microscopes (CLSM) thereby making fluorescence microscopy widely accessible. Furthermore, the development of genetically encoded fluorescent proteins have lead to advances in the analytical techniques used for the evaluation of protein localization, dynamics and interactions in the cellular environment. A perfect fluorescence assay is one, which could monitor every protein directly and map its behaviour in time. However, at present no single imaging modality can assess all aspects of the complicated processes a protein undergoes in carrying out its functions in the living cell. Proteins are mostly observed indirectly with the use of fluorescent tags, which are assumed not to interfere with the behaviour of the target protein being studied. High-resolution digital imaging of fusion proteins (FP) enables protein localization and colocalization to be monitored in time. More sophisticated quantitative techniques, such as fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) are used to study protein dynamics and protein-protein interactions. Although FRAP is a bulk assay method and FCS is more effective when only a few molecules are monitored at a time, the complementary use of both methods provides a more accurate insight into the movement of proteins and their interactions with cellular components in living cells. Most fluorescence assay methods rely on fluorescence changes to quantify the dynamics leading to these changes. Therefore an accurate understanding of protein behaviour does not only require the use of more than one assay technique where Chapter 1 10 necessary but also a knowledge of the photodynamic properties of the fluorescent tag being used, for a proper interpretation of the fluorescence data generated by these techniques. In this thesis, the efficacies of various fluorescence microscopy techniques in the analysis of protein localizations and dynamics in living cells are examined. In particular the complementarities of these methods have been investigated and the fluorescence behaviour of the enhanced green fluorescent protein (EGFP) considered in the interpretation of the fluorescence data. In the following paragraphs the basic principles of fluorescence microscopy will be discussed after a short history of the optical microscope. The green fluorescence proteins (GFPs) and their properties that make them convenient fluorescent probes for in vivo and in-situ analysis of proteins will be presented followed by a description of various fluorescence assay methods. Finally, a description of the proteins studied in this thesis will be given, followed by an outline of the thesis. 1.1 Short history of the optical microscope The magnifying and light focussing abilities of lenses have been observed as early as the first century when rudimentary lenses formed from transparent crystals were used to focus sunlight on dry materials to make fire. It was, however, not until the Renaissance when the first simple microscope was constructed. The humble 10x magnification achieved by the assembly, consisting of a magnifying lens and a plate situated at either ends of a tube, was then unprecedented as it made visible the fascinating details of objects. This inspired the Dutch spectacle maker Zacharias Janssen and his son Hans in 1590 to experiment with several lenses in a tube to enhance the achievable magnification thereby constructing the forerunner of the compound microscope and of the telescope. Galileo in 1609 worked out the principles of lenses and made an improved instrument 11 General Introduction equipped with a focussing device. Later, Antonie van Leeuwenhoek (1632-1723), credited with founding the field of microscopy, built microscopes using tiny lenses of very high magnifications to make his pioneering studies on bacteria, yeast, plants and the circulation of blood corpuscles in capillaries. Ingenious improvements to the light microscope continued through the nineteenth century. High quality lenses were being used in the optical elements and illumination systems were introduced. However, with the introduction of oil-immersion objectives at the end of the nineteenth century, the optical microscope reached its limits of resolution imposed by the diffraction of light. As discovered by Ernest Abbe in 1878, the best resolution attainable with the use of white light of average wavelength of 0.55 µm is 0.275 µm. It was thus realised that better resolutions could only be achieved by the use of a source of illumination with a much shorter wavelength. (The shortest wavelength of visible light, 0.4 µm could yield a resolution of 0.2µm.) In 1904, Köhler and Moritz von Rohr designed the ultraviolet microscope which was illuminated by ultraviolet radiation generated through a cadmium arc and used lenses fabricated from fused quartz. Operating in the shortest wavelength range of visible light, the microscope enabled images of high resolutions to be made. Inevitably, fluorescence was observed, thus establishing the foundation for ultraviolet and fluorescence microscopy. In 1934 Frits Zernike introduced the phase-contrast technique, which
Recommended publications
  • Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Fall 12-1-2017 Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections Fredrick Michael DeArmond Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Recommended Citation DeArmond, Fredrick Michael, "Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections" (2017). Dissertations and Theses. Paper 4036. 10.15760/etd.5920 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections by Fredrick Michael DeArmond A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Erik J. Sánchez, Chair Erik Bodegom Ralf Widenhorn Robert Strongin Portland State University 2017 ABSTRACT As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes increased interest in and demand for robust non-linear fluorescent markers, and characterization of the associated tool set.
    [Show full text]
  • Second Harmonic Imaging Microscopy
    170 Microsc Microanal 9(Suppl 2), 2003 DOI: 10.1017/S143192760344066X Copyright 2003 Microscopy Society of America Second Harmonic Imaging Microscopy Leslie M. Loew,* Andrew C. Millard,* Paul J. Campagnola,* William A. Mohler,* and Aaron Lewis‡ * Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, CT 06030-1507 USA ‡ Division of Applied Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Second Harmonic Generation (SHG) has been developed in our laboratories as a high- resolution non-linear optical imaging microscopy (“SHIM”) for cellular membranes and intact tissues. SHG is a non-linear process that produces a frequency doubling of the intense laser field impinging on a material with a high second order susceptibility. It shares many of the advantageous features for microscopy of another more established non-linear optical technique: two-photon excited fluorescence (TPEF). Both are capable of optical sectioning to produce 3D images of thick specimens and both result in less photodamage to living tissue than confocal microscopy. SHG is complementary to TPEF in that it uses a different contrast mechanism and is most easily detected in the transmitted light optical path. It also does not arise via photon emission from molecular excited states, as do both 1- and 2-photon excited fluorescence. SHG of intrinsic highly ordered biological structures such as collagen has been known for some time but only recently has the full potential of high resolution 3D SHIM been demonstrated on live cells and tissues. For example, Figure 1 shows SHIM from microtubules in a living organism, C. elegans. The images were obtained from a transgenic nematode that expresses a ß-tubulin-green fluorescent protein fusion and Figure 1 also shows the TPEF image from this molecule for comparison.
    [Show full text]
  • Fv1000 Fluoview
    Confocal Laser Scanning Biological Microscope FV1000 FLUOVIEW FLUOVIEW—Always Evolving FLUOVIEW–—From Olympus is Open FLUOVIEW—More Advanced than Ever The Olympus FLUOVIEW FV1000 confocal laser scanning microscope delivers efficient and reliable performance together with the high resolution required for multi-dimensional observation of cell and tissue morphology, and precise molecular localization. The FV1000 incorporates the industry’s first dedicated laser light stimulation scanner to achieve simultaneous targeted laser stimulation and imaging for real-time visualization of rapid cell responses. The FV1000 also measures diffusion coefficients of intracellular molecules, quantifying molecular kinetics. Quite simply, the FLUOVIEW FV1000 represents a new plateau, bringing “imaging to analysis.” Olympus continues to drive forward the development of FLUOVIEW microscopes, using input from researchers to meet their evolving demands and bringing “imaging to analysis.” Quality Performance with Innovative Design FV10i 1 Imaging to Analysis ing up New Worlds From Imaging to Analysis FV1000 Advanced Deeper Imaging with High Resolution FV1000MPE 2 Advanced FLUOVIEW Systems Enhance the Power of Your Research Superb Optical Systems Set the Standard for Accuracy and Sensitivity. Two types of detectors deliver enhanced accuracy and sensitivity, and are paired with a new objective with low chromatic aberration, to deliver even better precision for colocalization analysis. These optical advances boost the overall system capabilities and raise performance to a new level. Imaging, Stimulation and Measurement— Advanced Analytical Methods for Quantification. Now equipped to measure the diffusion coefficients of intracellular molecules, for quantification of the dynamic interactions of molecules inside live cell. FLUOVIEW opens up new worlds of measurement. Evolving Systems Meet the Demands of Your Application.
    [Show full text]
  • Two-Photon Excitation Fluorescence Microscopy
    P1: FhN/ftt P2: FhN July 10, 2000 11:18 Annual Reviews AR106-15 Annu. Rev. Biomed. Eng. 2000. 02:399–429 Copyright c 2000 by Annual Reviews. All rights reserved TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY PeterT.C.So1,ChenY.Dong1, Barry R. Masters2, and Keith M. Berland3 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; e-mail: [email protected] 2Department of Ophthalmology, University of Bern, Bern, Switzerland 3Department of Physics, Emory University, Atlanta, Georgia 30322 Key Words multiphoton, fluorescence spectroscopy, single molecule, functional imaging, tissue imaging ■ Abstract Two-photon fluorescence microscopy is one of the most important re- cent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast im- ages and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine. CONTENTS INTRODUCTION ................................................ 400 HISTORICAL REVIEW OF TWO-PHOTON MICROSCOPY TECHNOLOGY ...401 BASIC PRINCIPLES OF TWO-PHOTON MICROSCOPY ..................402 Physical Basis for Two-Photon Excitation ............................
    [Show full text]
  • SPARQ-Ed Risk Assessment Sheet : Immunofluorescence
    SPARQ-ed Risk Assessment Sheet : Immunofluorescence Hazard Analyse / Evaluate Risk Overall Risk Category Description of Risk Source Current Controls Event Category Consequences Exposure Probability (see explanation on last page) Exposure PPE worn (gloves, closed Prob footwear, and safety Chemical exposure - VR R U O F C Exposure to Chemical Agents : Risk of Unusual : goggles provided). Use body contact, spills Unusual but eye and skin exposure to chemicals Immuno- AC Low Low Low Low Mod Subs of potentially harmful and splash and Other Contact Minor : General Possible: Less likely (such as fixation / permeabilisation fluorescence QP Low Low Low Low Low Mod Chemical chemicals/substances in inhalation (eg. 4% with Chemical or chemicals used would to occur with the buffer containing 4% staining not a UP Low Low Low Low Low Low fume cupboard/safety paraformaldehyde is Substance be irritants only. control measures but paraformaldehyde) throughout the common cabinet. MSDS available. irritant to eyes and not impossible. RP Low Low Low Low Low Low staining procedure. procedure. Well documented skin). C Low Low Low Low Low Low procedures. PI Low Low Low Low Low Low Personal precaution Exposure procedures to be Prob followed in case of VR R U O F C Sharps : Immunoflourescence is injury. PPE worn Sharps injury (cuts or Unusual : AC Low Low Low Low Mod Subs generally performed with sections on (wearing gloves, closed slicing of fingers) Immuno- Conceivable : Sharps slides or with cells on coverslips. shoes, lab coat and from broken Hitting Objects Minor : May require fluorescence injury is likely to QP Low Low Low Low Low Mod Immunofluorescence staining of cells Mechanical safety goggles are coverslips or pointed with Part of first aid for minor cuts.
    [Show full text]
  • Etude Des Techniques De Super-Résolution Latérale En Nanoscopie Et Développement D’Un Système Interférométrique Nano-3D Audrey Leong-Hoï
    Etude des techniques de super-résolution latérale en nanoscopie et développement d’un système interférométrique nano-3D Audrey Leong-Hoï To cite this version: Audrey Leong-Hoï. Etude des techniques de super-résolution latérale en nanoscopie et développement d’un système interférométrique nano-3D. Micro et nanotechnologies/Microélectronique. Université de Strasbourg, 2016. Français. NNT : 2016STRAD048. tel-02003485 HAL Id: tel-02003485 https://tel.archives-ouvertes.fr/tel-02003485 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE MATHEMATIQUES, SCIENCES DE L'INFORMATION ET DE L'INGENIEUR (MSII) – ED 269 LABORATOIRE DES SCIENCES DE L'INGENIEUR, DE L'INFORMATIQUE ET DE L'IMAGERIE (ICUBE UMR 7357) THÈSE présentée par : Audrey LEONG-HOI soutenue le : 2 DÉCEMBRE 2016 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline / Spécialité : Electronique, microélectronique, photonique Étude des techniques de super-résolution latérale en nanoscopie et développement d'un système interférométrique nano-3D THÈSE dirigée par : Dr. MONTGOMERY Paul Directeur de recherche, CNRS, ICube (Strasbourg) Pr. SERIO Bruno Professeur des Universités, Université Paris Ouest, LEME (Paris) RAPPORTEURS : Dr. GORECKI Christophe Directeur de recherche, CNRS, FEMTO-ST (Besançon) Pr.
    [Show full text]
  • Label-Free Multiphoton Microscopy: Much More Than Fancy Images
    International Journal of Molecular Sciences Review Label-Free Multiphoton Microscopy: Much More than Fancy Images Giulia Borile 1,2,*,†, Deborah Sandrin 2,3,†, Andrea Filippi 2, Kurt I. Anderson 4 and Filippo Romanato 1,2,3 1 Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy; fi[email protected] 2 Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; [email protected] (D.S.); andrea.fi[email protected] (A.F.) 3 L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy 4 Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment.
    [Show full text]
  • Label-Free Non-Linear Multimodal Optical Microscopy-Basics, Development, and Applications
    Label-Free Non-linear Multimodal Optical Microscopy-Basics, Development, and Applications Nirmal Mazumder, Naveen Balla, Guan-Yu Zhuo, Yury Kistenev, Rajesh Kumar, Fu-Jen Kao, Sophie Brasselet, Viktor Nikolaev, Natalya Krivova To cite this version: Nirmal Mazumder, Naveen Balla, Guan-Yu Zhuo, Yury Kistenev, Rajesh Kumar, et al.. Label- Free Non-linear Multimodal Optical Microscopy-Basics, Development, and Applications. Frontiers in Physics, Frontiers, 2019, 7, 10.3389/fphy.2019.00170. hal-02410671 HAL Id: hal-02410671 https://hal.archives-ouvertes.fr/hal-02410671 Submitted on 13 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 31 October 2019 doi: 10.3389/fphy.2019.00170 Label-Free Non-linear Multimodal Optical Microscopy—Basics, Development, and Applications Nirmal Mazumder 1*, Naveen K. Balla 2, Guan-Yu Zhuo 3,4, Yury V. Kistenev 5,6, Rajesh Kumar 7, Fu-Jen Kao 8, Sophie Brasselet 9, Viktor V. Nikolaev 5,10 and Natalya A. Krivova 11 1 Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher
    [Show full text]
  • Super-Resolution Microscopy 1
    Semrock White Paper Series: Super-resolution Microscopy 1. Introduction Fluorescence microscopy has revolutionized the study of biological samples. Ever since the invention of fluorescence microscopy towards the beginning of the 20th century, significant technological advances have enabled elucidation of biological phenomenon at cellular, sub- cellular and even at molecular levels. However, the latest incarnation of the modern fluorescence microscope has led to a paradigm shift. This wave is about breaking the diffraction limit first proposed in 1873 by Ernst Abbe. The implications of this development are profound. This new technology, called super-resolution microscopy, allows for the visualization of cellular samples with a resolution similar to that of an electron microscope, yet it retains the advantages of an optical fluorescence microscope. This means it is possible to uniquely visualize desired molecular species in a cellular environment, even in three dimensions and now in live cells – all at a scale comparable to the spatial dimensions of the molecules under investigation. This article provides an overview of some of the key recent developments in super-resolution microscopy. 2. The problem So what is wrong with a conventional fluorescence microscope? To understand the answer to this question, consider a Green Fluorescence Protein (GFP) molecule that is about 3 nm in diameter and about 4 nm long. When a single GFP molecule is imaged using a 100X objective the size of the image should be 0.3 to 0.4 microns (100 times the size of the object). Yet the smallest spot that can be seen at the camera is about 25 microns. Which corresponds to an object size of about 250 nm.
    [Show full text]
  • How Single-Molecule Localization Microscopy Expandedour
    International Journal of Molecular Sciences Review How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription Peter Hoboth 1,2 , OndˇrejŠebesta 2 and Pavel Hozák 1,3,* 1 Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; [email protected] 3 Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic * Correspondence: [email protected] Abstract: Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression. Citation: Hoboth, P.; Šebesta, O.; Hozák, P. How Single-Molecule Keywords: cell nucleus; gene expression; transcription foci; transcription factors; super-resolution Localization Microscopy Expanded microscopy; structured illumination; stimulated emission depletion; stochastic optical reconstruc- Our Mechanistic Understanding of tion; photoactivation RNA Polymerase II Transcription.
    [Show full text]
  • Super-Resolved Fluorescence Microscopy
    8 OCTOBER 2014 Scientifc Background on the Nobel Prize in Chemistry 2014 SUPER-RESOLVED FLUORESCENCE MICROSCOPY THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their infuence in society. BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN Nobel Prize® and the Nobel Prize® medal design mark TEL +46 8 673 95 00, [email protected] HTTP://KVA.SE are registrated trademarks of the Nobel Foundation Super-resolved fluorescence microscopy The Royal Swedish Academy of Sciences has decided to award Eric Betzig, Stefan W. Hell and W. E. Moerner the Nobel Prize in Chemistry 2014 for the development of super-resolution fluorescence microscopy. 1. Abbe’s diffraction limit Towards the end of the nineteenth century Ernst Abbe (Abbe, 1873) and Lord Rayleigh (Rayleigh, 1896) formulated what is commonly known as the “diffraction limit” for microscopy. Roughly speaking, this limit states that it is impossible to resolve two elements of a structure which are closer to each other than about half the wave length (λ) in the lateral (x,y) plane and even further apart in the longitudinal plane (z). In other words, the minimal distances (δxmin, δymin) that, according to Abbe’s criterion, can be resolved in the lateral plane are approximated by xymin, min / 2 Another consequence of the same diffraction limitation is that it is not possible to focus a laser beam to a spot of smaller dimension than about λ/2 (Fig. 1). Figure 1: (Huang et al., 2010, Cell, 143, 1047 – 57). A: (left) Focused laser beam, (middle) structure, (right) resolved (A) and not resolved (B) structural features.
    [Show full text]
  • Basic Fluorescence Microscopy and Sample Preparation
    Basic Fluorescence Microscopy and Sample Preparation Eva Wegel [email protected] Visible Light 390 – 700 nm visible to the human eye White light is split into its components through a prism Reason: different λ refract at different angles What is fluorescence? George Gabriel Stokes (1819-1903) Jablonski diagram Stokes Shift Alexa Fluor 488 Photoluminescence: Fluorescence - spontaneous emission of light during transition of the system from its lowest vibrational -9 -6 energy level of an excited singlet state S1 back to the ground state S0 (10 to 10 s) Phosphorescence – a non-radiative transition into an isoenergetic vibrational level of a triplet state T1 , which lasts for 10-3 to 1000 s before it decays to the ground state IC: internal conversion ISC: intersystem crossing Photobleaching and Phototoxicity Photobleaching: photochemical destruction of the fluorophore In an excited triplet state, fluorophores may interact with another molecule to produce irreversible covalent modifications Phototoxicity: illumination of a fluorophore causes damage to the cell expressing it, eventually leading to cell death Common situation: the excited dye molecule passes its excess energy on to O2, creating reactive oxygen species (ROS): - ROS reacts with dye dye bleaches - ROS diffuses away and reacts with other dyes or cell components Solution: - Reduce the intensity of the excitation light and frequency of illumination - Close down the field aperture in order to restrict the illuminated area Basic principle of an (Inverted) Fluorescence Microscope
    [Show full text]