The Airships
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lighter-Than-Air Vehicles for Civilian and Military Applications
Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes. -
Hindenburg Disaster an Important Part of History That We Still Study
read-aloud Play/historical Fiction N1: People all over the An Unforgettable world dream of traveling in Disaster this fast and fancy airship: The explosion of the the Hindenburg. Hindenburg was the first major disaster captured on film: Scene 1 Photographs and N2: Werner Franz and his film footage of the brother, Günter, live in tragedy shocked Germany. people around the world. These N1: Werner needs a job. The incredible powerful images werner Franz: Günter, are helped ensure that any hotels hiring? true story of the largest the event would Günter Franz: Not that I never be forgotten. airship ever built—and know of. a terrifying disaster that werner: Hmm. Maybe I can get a job at a restaurant. will never be forgotten Günter: Look up in the sky! Here comes the Hindenburg! werner: It’s amazing! The Günter: I wonder if you can get a job on that airship. werner: That would make me the luckiest boy in the whole world. Scene 2 UP Text features As you read this play, N2: Seven months later, Werner’s dream Hindenburg CLOSE look closely at the dramatic photos and comes true. detailed captions. How do they help you N1: He becomes the new cabin boy on the understand this historic disaster? Hindenburg. By Kate Marks LOOK FOR WORD NERD’s 7 TERMS IN BOLD N2: Chief Kubis gives Werner a tour of the Disaster ship. heinrich kubis: Here are the sleeping rooms. Prologue It is your job to make the beds. Characters N1: A giant silver aircraft soars through the sky. -
Hindenburg: Last of The1 2 Gtaihi
www.PDHcenter.com www.PDHonline.org Table of Contents Slide/s Part Description 1N/ATitle 2 N/A Table of Contents 3~96 1 Exceeding the Grasp 97~184 2 Biggest Birds That Ever Flew 185~281 3 Triumph and Tragedy 282~354 4 Made in America 355~444 5 The Future is Now 445~541 6 LZ-129 542~594 7 Flight Operations 595~646 8 Magic Carpet Ride 647~759 9 Oh, The Humanity! 760~800 10 Back to the Future Hindenburg: Last of the1 2 GtAihi Part 1 “Ah, but a man’s reach should exceed his grasp, or what’s a heaven for?”for? Robert Browning, Poet Exceeding the Grasp 3 4 “...as by certain mechanical art and power to fly; The Dreams of Inventors so nicely was it balanced by weights and put in motion by hidden and enclosed air” Archytas of Tarentura, 400 B.C. 5 6 © J.M. Syken 1 www.PDHcenter.com www.PDHonline.org “…Then we are told of a monk who attempted a flight with wings from the top of a tower in Spain. He broke his legs, and wasafterwardburnedasasorcerer. Another similar trial was made from St. Mark’s steeple in Venice; another in Nuremberg;andsoonԝ - legs or arms were usually broken, occasionally a neck. In the sixteenth century we read of a certain Italian who went to the court of James IV of Scotland, and attempted to fly from the walls of Sterling Castle to France. His thig h was bkbroken; btbut,asareasonfor the failure, he asserted that some of the feathers used in constructing his wings “…Many other trials have there been of the same character. -
High-Energy Hydrogen III Teacher Page
High-energy Hydrogen III Teacher Page Safety of Hydrogen Student Objective The student: Key Words: • will be able to explain the current Hindenburg theory behind the Hindenburg disaster • will analyze the safety of gasoline vs hydrogen Time: 1 class period Materials: • video of the Hindenburg disaster newsreel (see Internet Sites below–vidicom-tv link) • PowerPoint presentation on the chemical causes of the Hindenburg disaster (see Internet Sites below–pbs.org) • online or printed copy of The True Story of Hydrogen and the Hindenburg Disaster (see Internet Sites below) • Slides of fuel leak simulation (see Internet Sites below–eere link) Background Information Many people believe hydrogen is dangerous, too dangerous to be used in society. Many use the Hindenburg disaster as one example, and the H-bomb and the first shuttle explosion as other examples. Some people know the H-bomb is made using tritium, an isotope of hydrogen. While the shuttle explosion was determined to be caused by an O-ring, it was only recently that additional information was obtained relative to the Hindenburg disaster. The new information is related to the “rocket fuel” that was painted on the airship. The fuel leak simulation shows what happens when two cars, one filled with hydrogen and the other filled with gas, are ignited. In the gasoline car, the fuel line was punctured with a 1/16 inch diameter hole which enabled the gasoline to leaked out of the fuel line under the middle of the car. During the 3.5 minutes of videotaping, the vehicle leaked five pints of gasoline (approximately 70,000 BTU). -
Cargo Airships: an International Status Report
CARGO AIRSHIPS: AN INTERNATIONAL STATUS REPORT Dr. Barry E. Prentice, Professor University of Manitoba and Robert Knotts BA MBA M Phil (Engineering), Chairman Airship Association Giant airships were built and operated primarily by the German Zeppelin company, from 1909 to 1940. The Imperial Airship Scheme of the British Government, the military airships of the U.S. Army and the Italian airships of Forlanini and Nobile also furthered airship technology. A negative perception of airship exists because of accidents that cloud the important achievements of this period. The giant Zeppelins could cruise at 80 miles per hour and carry useful loads of 70 tons on scheduled flights across the oceans. Of particular note is the Graf Zeppelin that made over 150 Atlantic crossings and circumnavigated the globe. These records were established without sophisticated communication equipment or navigation facilities. The ability to adapt this technology for cargo transport is recognized and has created interest internationally. Small inflatables (blimps) and semi-rigid airships are available for research, advertising or surveillance purposes. But, no heavy-lift airships exist currently. Over the past 15 years, new strategies have been developed to overcome the drawbacks of airship for cargo applications. The competition for the dominant cargo airship design is worldwide. This paper reviews the status of cargo airship developments on three Type: Regular 1 Prentice & Knotts 1 Prentice/Knotts continents. The technological approaches are compared and examined for the emergence of a dominant design. Search for the Dominant Design The last large airship capable of commercial cargo haulage was built before the invention of the strain gauge in 1938. -
Garland Fulton Collection
Garland Fulton Collection Allan Janus 2003 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents........................................................................................................ 3 Arrangement..................................................................................................................... 3 Biographical / Historical.................................................................................................... 2 Names and Subjects ...................................................................................................... 4 Container Listing ............................................................................................................. 5 Series 1: Personal Files, Correspondence, Fulton's Writings.................................. 5 Series 2: Lighter Than Air (LTA).............................................................................. 7 Series 3: Aeronautics, General.............................................................................. 17 Series 4: Publications, Papers, Reports, Journals................................................. 19 Series 5: US Navy, general................................................................................... -
(WALL NEWSPAPER PROJECT – Michelle) Examples of Investigative Journalism + Film
ANNEX II (WALL NEWSPAPER PROJECT – michelle) Examples of investigative journalism + film Best American Journalism of the 20th Century http://www.infoplease.com/ipea/A0777379.html The following works were chosen as the 20th century's best American journalism by a panel of experts assembled by the New York University school of journalism. 1. John Hersey: “Hiroshima,” The New Yorker, 1946 2. Rachel Carson: Silent Spring, book, 1962 3. Bob Woodward and Carl Bernstein: Investigation of the Watergate break-in, The Washington Post, 1972 4. Edward R. Murrow: Battle of Britain, CBS radio, 1940 5. Ida Tarbell: “The History of the Standard Oil Company,” McClure's, 1902–1904 6. Lincoln Steffens: “The Shame of the Cities,” McClure's, 1902–1904 7. John Reed: Ten Days That Shook the World, book, 1919 8. H. L. Mencken: Scopes “Monkey” trial, The Sun of Baltimore, 1925 9. Ernie Pyle: Reports from Europe and the Pacific during WWII, Scripps-Howard newspapers, 1940–45 10. Edward R. Murrow and Fred Friendly: Investigation of Sen. Joseph McCarthy, CBS, 1954 11. Edward R. Murrow, David Lowe, and Fred Friendly: documentary “Harvest of Shame,” CBS television, 1960 12. Seymour Hersh: Investigation of massacre by US soldiers at My Lai (Vietnam), Dispatch News Service, 1969 13. The New York Times: Publication of the Pentagon Papers, 1971 14. James Agee and Walker Evans: Let Us Now Praise Famous Men, book, 1941 15. W. E. B. Du Bois: The Souls of Black Folk, collected articles, 1903 16. I. F. Stone: I. F. Stone's Weekly, 1953–67 17. Henry Hampton: “Eyes on the Prize,” documentary, 1987 18. -
Goodyear – Civilian Blimps
Goodyear – civilian blimps Peter Lobner, 24 August 2021 1. Introduction Goodyear Tire & Rubber Company began their involvement with lighter-than-air (LTA) vehicles in 1912, when the company developed a fabric envelope suitable for use in airships and aerostats. The first blimps manufactured by the Goodyear Tire & Rubber Company were B-Type blimps ordered by the US Navy in 1917 for convoy escort duty. Goodyear (envelope supplier) and Curtiss Aeroplane (gondola supplier) produced 9 of the 17 B-Type blimps ordered. Goodyear also supplied the envelopes for some of the Navy’s 10 C-Type patrol blimps, which were delivered in 1918, after the end of WW I. Both the B- and C-Type blimps used hydrogen as the lift gas. In 1923, Goodyear teamed with German firm Luftschiffbau Zeppelin and created a new subsidiary, Goodyear Zeppelin Corporation. In June 1925, their Type AD Pilgrim (NC-9A) made its first flight and became Goodyear’s first blimp to use helium lift gas. Pilgrim was certified later in 1925, becoming the first US commercial airship. Goodyear Zeppelin Corporation filed a patent application for a nonrigid airship in September 1929, describing the objectives of their invention as follows: “This invention relates to non-rigid airships, and it has particular relation to the suspension of pilot cars or gondolas from the envelopes of non-rigid airships. The principal object of the invention is to provide a non-rigid airship in which the envelope and the pilot car or engine car are so constructed as to offer the minimum air resistance. Another object of the invention is to provide connections between the envelope and pilot car that are not exposed to the airstream for sustaining the weight of the pilot car, as well as stabilizing it against lateral or longitudinal movement.” 1 In patent Figure 1, the pressurized lift gas envelope (10) contains an air ballonet (12, for adjusting airship buoyancy) and a load suspension system for carrying and distributing the weight of the gondola (11) affixed under the envelope and the thrust loads from the with attached engines. -
Airship Hangars in Canada
FWS Group Building Large Airship Hangars in Canada Engineering Considerations FWS Group History of Hangar Structures • In 1909, a French airplane pilot crash landed and rolled into a farmer’s cattle pen • He decided to set up shop in this unused shed, later ordering a number of these sheds for further use • The word hangar comes from a northern French dialect, and means "cattle pen" Zeppelin ZR3 approaching Hangar (Naval Air Station, Lakehurst, N.J) FWS Group History of Hangar Structures • A limited number of the over 100 airship hangars built in 19 countries survive today and documentation related to their construction is scarce • With the reinvention of the airship, the hangar needs to follow suit • Borrowing cues from the past and taking advantage of contemporary design and construction techniques FWS Group History of Hangar Structures • One of the first zeppelin sheds in Germany (1909) was a 600 ft x 150 ft x 66 ft steel-lattice structure with light cladding • 1920s saw the construction of parabolic reinforced concrete hangars • Designed by the pioneer of prestressed concrete, Eugene Freyssinet Construction of Former Hangar at Former Hangar at Orly, France Orly, France FWS Group Airship Hangars • “Hangar One” in California is a famous North American hangar that survives today • Over 1000 ft long and 308 ft wide Hangar One , NASA Ames Research Center USS Macon inside “Hangar One” circa 1933 Moffett Field, California FWS Group Airship Hangars • Another famous group of hangars in California are at Tustin • Over 1000 ft long, 300 ft wide and 178 ft high • All-wood design… war time rationing. -
THE GRAF ZEPPELIN a Background History to a Philatelic Article
THE GRAF ZEPPELIN a background history to a philatelic article An Overview LZ 127 Graf Zeppelin (Deutsches Luftschiff Zeppelin #127; Registration: D-LZ 127) was a German-built and-operated, passenger-carrying, hydrogen-filled, rigid airship which operated commercially from 1928 to 1937. It was designed to be operated by a crew of 36 officers and men. When it entered commercial service in 1928, it became the first commercial passenger transatlantic flight service in the world. The LZ-127, the most successful zeppelin ever built. The naming took place on the 8th July, 1928 by Countess Helene (Hella) Amalie von Brandenstein-Zeppelin (1879-1967), the daughter of the German airship pioneer and nobleman, Ferdinand Adolf Heinrich Graf von Zeppelin (1838-1917). It would have been the late count’s 90th birthday. By the time of the Graf Zeppelin’s last flight nine years later, the ship had flown over a million miles on 590 flights, carrying thousands of passengers and hundreds of thousands of pounds of freight and mail, with safety and speed. The Graf Zeppelin had circled the globe, was famous throughout the world and inspired an international zeppelin fever in the late 1920s and early 1930s. The LZ 127 was the longest rigid airship at the time of its completion and was only surpassed by the USS Akron in 1931. It was scrapped for fighter plane parts in 1940. Graf Zeppelin Test Flights Graf Zeppelin made its first flight on 18th September 1928, under the command of Hugo Eckener. Born 10th August 1868, Flensburg, Germany, he was the manager of the Luftschiffbau Zeppelin during the inter-war and the commander of the Graf Zeppelin for most of its record-setting flights. -
Keck Study Airships; a New Horizon for Science”
Keck Study Airships; A New Horizon for Science” Scott Hoffman Northrop Grumman Aerospace Systems May 1, 2013 Military Aircraft Systems (MAS) Melbourne FL 321-951-5930 Does not Contrail ITAR Controlled Data Airship “Lighter than Air” Definition Airplanes are heavier than air and fly because of the aerodynamic force generated by the flow of air over the lifting surfaces. Balloons and airships are lighter-than-air (LTA), and fly because they are buoyant, which is to say that the total weight of the aircraft is less than the weight of the air it displaces.1 The Greek philosopher Archimedes (287 BC – 212 B.C.) first established the basic principle of buoyancy. While the principles of aerodynamics do have some application to balloons and airships, LTA craft operate principally as a result of aerostatic principles relating to the pressure, temperature and volume of gases. A balloon is an unpowered aerostat, or LTA craft. An airship is a powered LTA craft able to maneuver against the wind. 1 NASA Web site U.S. Centennial of Flight Commission http://www.centennialofflight.gov/index2.cfm Does not Contain ITAR Controlled Data Atmospheric Airship Terminology • Dirigible – Lighter-than-air, Engine Driven, Steerable Craft • Airship –Typically any Type of Dirigible – Rigid –Hindenburg, USS Macon, USS Akron USS Macon 700 ft X 250 ft – Semi-Rigid – Has a Keel for Carriage and Engines • NT-07 Zeppelin Rigid – Non-Rigid – Undercarriage and Engines Support by the Hull • Cylindrical Class-C – “Blimp” – Goodyear, Navy AZ-3, Met Life Blimp, Blue Devil Simi-Rigid -
LZ 129 Hindenburg from Wikipedia, the Free Encyclopedia (Redirected from Airship Hindenburg)
Create account Log in Article Talk Read Edit View history LZ 129 Hindenburg From Wikipedia, the free encyclopedia (Redirected from Airship Hindenburg) Navigation "The Hindenburg" redirects here. For other uses, see Hindenburg. Main page LZ 129 Hindenburg (Luftschiff Zeppelin #129; Registration: D-LZ 129) was a large LZ-129 Hindenburg Contents German commercial passenger-carrying rigid airship, the lead ship of the Hindenburg Featured content class, the longest class of flying machine and the largest airship by envelope volume.[1] Current events It was designed and built by the Zeppelin Company (Luftschiffbau Zeppelin GmbH) on Random article the shores of Lake Constance in Friedrichshafen and was operated by the German Donate to Wikipedia Zeppelin Airline Company (Deutsche Zeppelin-Reederei). The airship flew from March 1936 until destroyed by fire 14 months later on May 6, 1937, at the end of the first Interaction North American transatlantic journey of its second season of service. Thirty-six people died in the accident, which occurred while landing at Lakehurst Naval Air Station in Help Manchester Township, New Jersey, United States. About Wikipedia Hindenburg was named after the late Field Marshal Paul von Hindenburg (1847–1934), Community portal President of Germany (1925–1934). Recent changes Contact page Contents 1 Design and development Hindenburg at NAS Lakehurst Toolbox 1.1 Use of hydrogen instead of helium Type Hindenburg-class 2 Operational history What links here airship 2.1 Launching and trial flights Related changes Manufacturer