Assessing Freshwater Changes Over Southern and Central Africa (2002–2017)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Silent Crisis in Congo: the Bantu and the Twa in Tanganyika
CONFLICT SPOTLIGHT A Silent Crisis in Congo: The Bantu and the Twa in Tanganyika Prepared by Geoffroy Groleau, Senior Technical Advisor, Governance Technical Unit The Democratic Republic of Congo (DRC), with 920,000 new Bantus and Twas participating in a displacements related to conflict and violence in 2016, surpassed Syria as community 1 meeting held the country generating the largest new population movements. Those during March 2016 in Kabeke, located displacements were the result of enduring violence in North and South in Manono territory Kivu, but also of rapidly escalating conflicts in the Kasaï and Tanganyika in Tanganyika. The meeting was held provinces that continue unabated. In order to promote a better to nominate a Baraza (or peace understanding of the drivers of the silent and neglected crisis in DRC, this committee), a council of elders Conflict Spotlight focuses on the inter-ethnic conflict between the Bantu composed of seven and the Twa ethnic groups in Tanganyika. This conflict illustrates how representatives from each marginalization of the Twa minority group due to a combination of limited community. access to resources, exclusion from local decision-making and systematic Photo: Sonia Rolley/RFI discrimination, can result in large-scale violence and displacement. Moreover, this document provides actionable recommendations for conflict transformation and resolution. 1 http://www.internal-displacement.org/global-report/grid2017/pdfs/2017-GRID-DRC-spotlight.pdf From Harm To Home | Rescue.org CONFLICT SPOTLIGHT ⎯ A Silent Crisis in Congo: The Bantu and the Twa in Tanganyika 2 1. OVERVIEW Since mid-2016, inter-ethnic violence between the Bantu and the Twa ethnic groups has reached an acute phase, and is now affecting five of the six territories in a province of roughly 2.5 million people. -
Ramsar Information Sheet
Ramsar Information Sheet Text copy-typed from the original document. 1. Date this sheet was completed: 20.11.1996 2. Country: Botswana 3. Name of wetland: The Okavango Delta System 4. Geographical co-ordinates: The Okavango Delta System lies between Longitudes 21 degrees 45 minutes East and 23 degrees 53 minutes East; and Latitudes 18 degrees 15 minutes South and 20 degrees 45 minutes South. It includes the Okavango River, commonly referred to as the Pan handle; the entire Okavango Delta; Lake Ngami; and parts of the Kwando and Linyanti River systems that fall west of the western boundary of the Chobe National Park. The entire area is as depicted on the attached map. 5. Altitude: Generally between 930 metres and 1000 metres above sea level. 6. Area: Approximately 68 640 km² (6 864 000 hectares) 7. Overview Three main features characterise the region, the Okavango, the Kwando and Linyanti river system connected to the Okavango Delta through the Selinda spillway and the intervening and surrounding dryland areas. These features are located within the Okavango rift, a geological structure subject to tectonis control and infilled with Kahalari Group sediments, principally sand, up to 300 metres thick. The Delta is the most important of the above named features. It is an inland delta in a semi arid region in which inflow fluctuations result in large fluctuations in flooded area (10,000 - 16,000 km²), which is comprised of permanent swamp, seasonal swamp and intermittently flooded areas. Similar flooding takes place in the Kwando/Linyanti river system. This leads to high seasonal concentrations of birdlife and wildlife, giving the area a very high tourism potential. -
Final Report: Southern Africa Regional Environmental Program
SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM FINAL REPORT DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. FINAL REPORT SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM Contract No. 674-C-00-10-00030-00 Cover illustration and all one-page illustrations: Credit: Fernando Hugo Fernandes DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. CONTENTS Acronyms ................................................................................................................ ii Executive Summary ............................................................................................... 1 Project Context ...................................................................................................... 4 Strategic Approach and Program Management .............................................. 10 Strategic Thrust of the Program ...............................................................................................10 Project Implementation and Key Partners .............................................................................12 Major Program Elements: SAREP Highlights and Achievements .................. 14 Summary of Key Technical Results and Achievements .......................................................14 Improving the Cooperative Management of the River -
A Lagrangian Perspective of the Hydrological Cycle in the Congo River Basin Rogert Sorí1, Raquel Nieto1,2, Sergio M
Earth Syst. Dynam. Discuss., doi:10.5194/esd-2017-21, 2017 Manuscript under review for journal Earth Syst. Dynam. Discussion started: 9 March 2017 c Author(s) 2017. CC-BY 3.0 License. A Lagrangian Perspective of the Hydrological Cycle in the Congo River Basin Rogert Sorí1, Raquel Nieto1,2, Sergio M. Vicente-Serrano3, Anita Drumond1, Luis Gimeno1 1 Environmental Physics Laboratory (EphysLab), Universidade de Vigo, Ourense, 32004, Spain 5 2 Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of SãoPaulo, São Paulo, 05508-090, Brazil 3 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, 50059, Spain Correspondence to: Rogert Sorí ([email protected]) Abstract. 10 The Lagrangian model FLEXPART was used to identify the moisture sources of the Congo River Basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation-minus-precipitation. The method permitted the identification at an annual scale of five continental and four oceanic regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB itself, providing more than 50% of the total atmospheric moisture income to the basin. Apart 15 from this, both the land extension to the east of the CRB together with the ocean located in the eastern equatorial South Atlantic Ocean are also very important sources, while the Red Sea source is merely important in the budget of (E-P) over the CRB, despite its high evaporation rate. -
The Hydrology of the Okavango Delta, Botswana—Processes, Data and Modelling
Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling Christian Milzow & Lesego Kgotlhang & Peter Bauer-Gottwein & Philipp Meier & Wolfgang Kinzelbach Abstract The wetlands of the Okavango Delta accom- Introduction modate a multitude of ecosystems with a large diversity in fauna and flora. They not only provide the traditional The Okavango wetlands, commonly called the Okavango livelihood of the local communities but are also the basis Delta, are spread on top of an alluvial fan located in of a tourism industry that generates substantial revenue for northern Botswana, in the western branch of the East the whole of Botswana. For the global community, the African Rift Valley. Waters forming the Okavango River wetlands retain a tremendous pool of biodiversity. As the originate in the highlands of Angola, flow southwards, upstream states Angola and Namibia are developing, cross the Namibian Caprivi-Strip and eventually spread however, changes in the use of the water of the Okavango into the terminal wetlands on Botswanan territory cover- River and in the ecological status of the wetlands are to be ing the alluvial fan (Fig. 1). Whereas the climate in the expected. To predict these impacts, the hydrology of the headwater region is subtropical and humid with an annual Delta has to be understood. This article reviews scientific precipitation of up to 1,300 mm, it is semi-arid in Botswana work done for that purpose, focussing on the hydrological with precipitation amounting to only 450 mm/year in the modelling of surface water and groundwater. Research Delta area. High potential evapotranspiration rates cause providing input data to hydrological models is also over 95% of the wetland inflow and local precipitation to be presented. -
Altimetry, SAR and GRACE Applied for Modelling of an Ungauged Catchment
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Hydrol. Earth Syst. Sci. Discuss., 7, 9123–9154, 2010 Hydrology and www.hydrol-earth-syst-sci-discuss.net/7/9123/2010/ Earth System HESSD doi:10.5194/hessd-7-9123-2010 Sciences 7, 9123–9154, 2010 © Author(s) 2010. CC Attribution 3.0 License. Discussions Altimetry, SAR and This discussion paper is/has been under review for the journal Hydrology and Earth GRACE applied for System Sciences (HESS). Please refer to the corresponding final paper in HESS modelling of an if available. ungauged catchment Combining satellite radar altimetry, SAR C. Milzow et al. surface soil moisture and GRACE total Title Page storage changes for model calibration Abstract Introduction and validation in a large ungauged Conclusions References catchment Tables Figures 1 2 1 C. Milzow , P. E. Krogh , and P. Bauer-Gottwein J I 1 Department of Environmental Engineering, Technical University of Denmark, J I 2800 Kgs. Lyngby, Denmark 2National Space Institute, Technical University of Denmark, 2100 Copenhagen, Denmark Back Close Received: 12 November 2010 – Accepted: 20 November 2010 Full Screen / Esc – Published: 30 November 2010 Correspondence to: C. Milzow ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 9123 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract HESSD The availability of data is a major challenge for hydrological modelling in large -
Estimating Rainfall and Water Balance Over the Okavango River Baprovidedsin Byfor South Easthydrological Academic Libraries System (SEALS) Applications
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Estimating rainfall and water balance over the Okavango River Baprovidedsin byfor South Easthydrological Academic Libraries System (SEALS) applications Julie Wilk, Dominic Kniveton, Lotta Andersson, Russell Layberry, Martin C. Todd, Denis Hughes, Susan Ringrose and Cornelis Vanderpost Department of Water and Environmental Studies, Linköping University, S-581 83 Linköping, Sweden Department of Physics Chemistry and Environmental Science, University of Sussex, Falmer, Brighton, UK Swedish Meteorological and Hydrological Institute, 601 76 Norrköping, Sweden University College of London, 26 Bedford Way, WC1H 0AP, London, UK Institute of Water Research, Rhodes University, Grahamstown, South Africa Harry Oppenheimer Okavango Research Centre, Private Bag 285, Maun, Botswana Abstract A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance, which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges were evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) datasets. The consistency between the gauges and satellite estimates was considered. -
Addressing Belgium's Crimes in the Congo Free State
Historical Security Council Addressing Belgium's crimes in the Congo Free State Director: Mauricio Quintero Obelink Moderator: Arantxa Marin Limón INTRODUCTION The Security Council is one of the six main organs of the United Nations. Its five principle purposes are to “maintain international peace and security, to develop diplomatic relations among nations, to cooperate in solving international problems, promote respect for human rights, and to be a centre for harmonizing the actions of nations” (What is the Security Council?, n.d.). The Committee is made up of 10 elected members and 5 permanent members (China, France, Russian Federation, United Kingdom, United States), all of which have veto power, which ultimately allows them to block proposed resolutions. As previously mentioned, the Security Council focuses on international matters regarding diplomatic relations, as well as the establishment of human rights protocols. For this reason, Belgium’s occupation of the greater Congo area is a topic of relevance within the committee. The Congo Free State was a large territory in Africa established by the Belgian Crown in 1885, and lasted until 1908. It was created after Leopold II commissioned European investors to explore and establish the land as European territory in order to gain international, economic; and political power. When the Belgian military gained power over the Congo territory, natives included, inhumane crimes were committed towards the inhabitants, all while under Leopold II’s supervision and approval. For this reason, King Leopold II’s actions, as well as the direct crimes committed by his army, must be held accountable in order to bring justice to the territory and its people. -
Teleostei, Osteoglossomorpha)
A peer-reviewed open-access journal ZooKeys 561: 117–150Cryptomyrus (2016) : a new genus of Mormyridae (Teleostei, Osteoglossomorpha)... 117 doi: 10.3897/zookeys.561.7137 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Cryptomyrus: a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa John P. Sullivan1, Sébastien Lavoué2, Carl D. Hopkins1,3 1 Cornell University Museum of Vertebrates, 159 Sapsucker Woods Road, Ithaca, New York 14850 USA 2 Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan 3 Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 USA Corresponding author: John P. Sullivan ([email protected]) Academic editor: N. Bogutskaya | Received 9 November 2015 | Accepted 20 December 2015 | Published 8 February 2016 http://zoobank.org/BBDC72CD-2633-45F2-881B-49B2ECCC9FE2 Citation: Sullivan JP, Lavoué S, Hopkins CD (2016) Cryptomyrus: a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa. ZooKeys 561: 117–150. doi: 10.3897/ zookeys.561.7137 Abstract We use mitochondrial and nuclear sequence data to show that three weakly electric mormyrid fish speci- mens collected at three widely separated localities in Gabon, Africa over a 13-year period represent an un- recognized lineage within the subfamily Mormyrinae and determine its phylogenetic position with respect to other taxa. We describe these three specimens as a new genus containing two new species. Cryptomyrus, new genus, is readily distinguished from all other mormyrid genera by a combination of features of squa- mation, morphometrics, and dental attributes. Cryptomyrus ogoouensis, new species, is differentiated from its single congener, Cryptomyrus ona, new species, by the possession of an anal-fin origin located well in advance of the dorsal fin, a narrow caudal peduncle and caudal-fin lobes nearly as long as the peduncle. -
Kitona Operations: Rwanda's Gamble to Capture Kinshasa and The
Courtesy of Author Courtesy of Author of Courtesy Rwandan Patriotic Army soldiers during 1998 Congo war and insurgency Rwandan Patriotic Army soldiers guard refugees streaming toward collection point near Rwerere during Rwanda insurgency, 1998 The Kitona Operation RWANDA’S GAMBLE TO CAPTURE KINSHASA AND THE MIsrEADING OF An “ALLY” By JAMES STEJSKAL One who is not acquainted with the designs of his neighbors should not enter into alliances with them. —SUN TZU James Stejskal is a Consultant on International Political and Security Affairs and a Military Historian. He was present at the U.S. Embassy in Kigali, Rwanda, from 1997 to 2000, and witnessed the events of the Second Congo War. He is a retired Foreign Service Officer (Political Officer) and retired from the U.S. Army as a Special Forces Warrant Officer in 1996. He is currently working as a Consulting Historian for the Namib Battlefield Heritage Project. ndupress.ndu.edu issue 68, 1 st quarter 2013 / JFQ 99 RECALL | The Kitona Operation n early August 1998, a white Boeing remain hurdles that must be confronted by Uganda, DRC in 1998 remained a safe haven 727 commercial airliner touched down U.S. planners and decisionmakers when for rebels who represented a threat to their unannounced and without warning considering military operations in today’s respective nations. Angola had shared this at the Kitona military airbase in Africa. Rwanda’s foray into DRC in 1998 also concern in 1996, and its dominant security I illustrates the consequences of a failure to imperative remained an ongoing civil war the southwestern Bas Congo region of the Democratic Republic of the Congo (DRC). -
The Okavango; a River Supporting Its People, Environment and Economic Development
The Okavango; a river supporting its people, environment and economic development Article (Accepted Version) Kgathi, D L, Kniveton, D, Ringrose, S, Turton, A R, Vanderpost, C H M, Lundqvist, J and Seely, M (2006) The Okavango; a river supporting its people, environment and economic development. Journal of Hydrology, 331 (1-2). pp. 3-17. ISSN 0022-1694 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/1690/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Special Issue Journal of Hydrology The Hydrology of the Okavango Basin and Delta in a development perspective Guest editors: Dominic Kniveton, and Martin Todd Paper 1. -
Central African Megatransect Project
Central African Megatransect Project A Study of Forest and Humans Proposal Submitted for Consideration By J. Michael Fay Wildlife Conservation Society Table of Contents TABLE OF CONTENTS..................................................................................0 INTRODUCTION.........................................................................................3 STUDY AREAS ...........................................................................................4 VARIABLES...............................................................................................5 RESEARCH QUESTIONS ...............................................................................6 RESEARCH AND ANALYSIS DESIGN...............................................................6 METHODOLOGY .........................................................................................9 STUDY AREA...............................................................................................................................9 SITE CHOICE...............................................................................................................................9 POTENTIAL DATA PROBLEMS ........................................................................................................10 DATA ......................................................................................................................................11 Existing Data........................................................................................................................11