The Wide Range of Antibiotic Resistance and Variability of Genotypic Profiles in Escherichia Coli from Domestic Animals in Easte
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NARMS – EB 2000 Veterinary Isolates Fig. 18. Resistance Among Salmonella Serotypes for Isolates from Cattle*
NARMS – EB 2000 Veterinary Isolates Fig. 18. Resistance Among Salmonella Serotypes for Isolates from Cattle* S. typhimurium (n=332)** S. montevideo (n=330) Amikacin 0.00% Amikacin 0.00% Amox-Clav 14.46% Amox-Clav 0.61% Ampicillin 66.87% Ampicillin 0.61% Apramycin 1.20% Apramycin 0.00% Cefoxitin 10.54% Cefoxitin 0.61% Ceftiofur 12.65% Ceftiofur 0.61% Ceftriaxone 0.00% Ceftriaxone 0.00% Cephalothin 13.25% Cephalothin 0.61% Chloramphenicol 39.46% Chloramphenicol 0.91% Ciprofloxacin 0.00% Ciprofloxacin 0.00% Gentamicin 3.31% Gentamicin 0.30% Kanamycin 38.86% Kanamycin 0.00% Nalidixic Acid 0.00% Nalidixic Acid 0.00% Streptomycin 66.57% Streptomycin 1.52% Sulfamethoxazole 66.87% Sulfamethoxazole 1.21% Tetracycline 66.57% Tetracycline 2.12% Trimeth-Sulfa 5.42% Trimeth-Sulfa 0.30% 0% 10% 20% 30% 40% 50% 60% 70% 80% 0% 1% 1% 2% 2% 3% **including copenhagen S. anatum (n=292) S. newport (n=185) Amikacin 0.00% Amikacin 0.00% Amox-Clav 1.71% Amox-Clav 80.00% Ampicillin 2.40% Ampicillin 80.54% Apramycin 0.00% Apramycin 0.00% Cefoxitin 1.37% Cefoxitin 77.84% Ceftiofur 1.37% Ceftiofur 80.00% Ceftriaxone 0.00% Ceftriaxone 2.16% Cephalothin 2.05% Cephalothin 77.84% Chloramphenicol 1.71% Chloramphenicol 81.62% Ciprofloxacin 0.00% Ciprofloxacin 0.00% Gentamicin 0.68% Gentamicin 7.57% Kanamycin 1.71% Kanamycin 7.57% Nalidixic Acid 0.34% Nalidixic Acid 0.00% Streptomycin 2.05% Streptomycin 82.70% Sulfamethoxazole 2.05% Sulfamethoxazole 74.05% Tetracycline 35.96% Tetracycline 83.24% Trimeth-Sulfa 0.34% Trimeth-Sulfa 25.41% 0% 5% 10% 15% 20% 25% 30% 35% 40% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% *all sources NARMS – EB 2000 Veterinary Isolates Fig. -
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. -
A Sensitive Method for Direct Analysis of Impurities in Apramycin and Other Aminoglycoside Antibiotics Using Charged Aerosol
- SO4 A Sensitive Method for Direct Analysis of Impurities in Apramycin and Other Aminoglycoside Antibiotics Using Charged Aerosol Detection Zhen Long1, Qi Zhang2, Yan Jin1, Lina Liang1, Bruce Bailey2, Ian Acworth2, Deepali Mohindra3 1 2 3 Thermo Fisher Scientific, Shanghai, China, Thermo Fisher Scientific, Chelmsford, MA, USA and Thermo Fisher Scientific, Sunnyvale, CA, USA Comparison of CAD and ELSD Detection Analysis of Other Aminoglycoside Antibiotics Overview Results Purpose: To develop a sensitive non-derivatization method for impurity assessment of Sample pre-treatment with SPE This method has also been applied to impurity analysis of an additional eleven apramycin sulfate and other aminoglycoside antibiotics. Sample pre-treatment with SPE SPE Column: Dionex OnGuard II A CAD and ELSD are both nebulization-based universal detection technologies. aminoglycoside antibiotics, including neomycin, gentamicin, kanamycin, streptomycin, Comparison between CAD and ELSD under the same chromatographic conditions tobramycin, amikacin, etimicin, netilmicin, sisomicin, ribostamycin and paromomycin. Methods: A 30min gradient method using hydrophilic interaction liquid chromatography Sample solvent: 80% 5mM ammonium formate, 20% acetonitrile Sulfate is a major interference for apramycin impurity assessment with a HILIC method. demonstrated that CAD is much more sensitive than ELSD. As shown in the Figure 5 shows impurity analysis of kenamycin, etimicin, ribostamycin and paromomycin with charged aerosol detection (HILIC-CAD) was developed for direct analysis of Sample: 220.6 mg/mL in 2 mL sample solvent Without sample cleanup, some early eluting impurities were found to be masked under chromatograms in Figure 4 and data summarized in Table 1, 16 impurities (S/N >3) were using the HILIC-CAD method. -
High Level Aminoglycoside Resistance in Enterococcus, Pediococcus and Lactobacillus Species from Farm Animals and Commercial Meat Products
Ann Microbiol (2016) 66:101–110 DOI 10.1007/s13213-015-1086-1 ORIGINAL ARTICLE High level aminoglycoside resistance in Enterococcus, Pediococcus and Lactobacillus species from farm animals and commercial meat products George Jaimee1 & Prakash M. Halami1 Received: 10 September 2014 /Accepted: 8 April 2015 /Published online: 2 May 2015 # Springer-Verlag Berlin Heidelberg and the University of Milan 2015 Abstract Inappropriate use of aminoglycosides in animal I40a suggesting its involvement in antibiotic resistant gene husbandry has led to the selection and emergence of high- transfer. Besides, strains of L. plantarum, a species used as level aminoglycoside resistance (HLAR) in lactic acid bacte- probiotic, isolated in this study showed the occurrence of ria (LAB). The objective of this study was to assess the pres- aph(3′)IIIa as well as aac (6′)Ie-aph(2″)Ia genes that could ence of aminoglycoside resistant LAB in farm animals and be of concern in human health. The findings of the study meat products. Gentamicin resistant LAB (n=138) were se- highlight the spread and emergence of multi-resistance genes lectively isolated from 50 different meat and farm animal for aminoglycoside antibiotics among beneficial LAB. sources. These native isolates of LAB were subsequently characterized for their minimum inhibitory concentration to Keywords Lactic acid bacteria . Minimum inhibitory seven different aminoglycoside antibiotics. HLAR to genta- concentration . Aminoglycoside . Random amplified micin, kanamycin and streptomycin was found to be 38 %, polymorphic DNA . Integrase 45 % and 15 %, respectively. Selected cultures of LAB were identified by random amplified polymorphic DNA (RAPD)-PCR and 16S rDNA gene sequencing. Subsequent Introduction detection for the presence of nine aminoglycoside modifying genes [aac(6′)Ie-aph(2″)Ia, aph(3′)IIIa, aad6, ant(6)Ia, The spread of resistance to antibiotics among bacteria is ant(9)Ia, ant(9)Ib, aph(2″)Ib, aph(2″)Ic and aph(2″)Id] was alarming. -
LC/MS/MS Analysis of Chloramphenicol in Shrimp
FDA/ORA/DFS No. 4290 Page 1 of 18 LC/MS/MS Analysis of Chloramphenicol in Shrimp Barbara K. Neuhaus,* Jeffrey A. Hurlbut* and Walter Hammack**, * Food & Drug Administration, Pacific Regional Lab - NW, 22201 23RD Drive SE, Bothell, WA 98021 ** Chemical Residue Lab, FL Dept. of Agriculture & Consumer Services, 3125 Conner Blvd., Tallahassee, FL 32399 Abstract Recently our laboratory (FDA, PRL-NW) was given the task of testing the performance of a method developed at the Chemical Residue Lab of the Florida Dept. of Agriculture. This is a liquid chromatographic mass spectrometric (LC/MS/MS) method for qualitative and quantitative detection of chloramphenicol (CAP) in shrimp at the sub parts per billion (ppb) level. Shrimp is pulverized with dry ice, is extracted with ethyl acetate, evaporated with N2, treated with hexane/aqueous NaCl, extracted back into ethyl acetate, dissolved into methanol-water after evaporation, and injected into an LC/MS. CAP eluted from the C18 LC column at about 12.2 min using an acetic acid – ammonium acetate – acetonitrile - water mobile phase. The mass spectrometer was operated in the negative ion mode using selected reaction monitoring, and the precursor ion at m/z = 321 yielded four main product ions of m/z = 257, 194, 176 and 152. The peak area of the m/z 152 peak was used for quantitation. Linear plots were obtained between 0.50 and 10.0 ng/mL CAP. Shrimp tissues were fortified with CAP at 0.10, 0.25, 0.50 and 1.0 ng/mL. Overall recoveries were 85, 92, 85 and 102 % with % RSD values of 9.4, 1.6, 3.1 and 2.5% respectively. -
Antimicrobial Susceptibility Pattern of Genital Mycoplasmas Among a Group of Pregnant Women
Alexandria Journal of Medicine (2016) 52, 353–358 HOSTED BY Alexandria University Faculty of Medicine Alexandria Journal of Medicine http://www.elsevier.com/locate/ajme Antimicrobial susceptibility pattern of genital Mycoplasmas among a group of pregnant women Safaa M. Abdel Rahman a, Rania A. Hassan a,*, Noha A. Sakna b a Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt b Department of Gynaecology and Obstetrics, Ain Shams University, Cairo, Egypt Received 10 October 2015; revised 27 November 2015; accepted 23 December 2015 Available online 17 February 2016 KEYWORDS Abstract Mycoplasma hominis (MH) and Ureaplasma urealyticum (UU) are important members of Genital Mycoplasmas; genital Mycoplasmas. They are implicated in urogenital infections and complicated pregnancy Mycoplasma hominis; (chorioamnionitis, preterm delivery, abortion, and preterm birth) as well as bacterial vaginosis Ureaplasma urealyticum; and cervicitis. The administration of antimicrobial agents to pregnant women with preterm rupture Mycoplasma IES kit; of the membranes (PROM) may extend the gestation period and decrease the risks of associated Antimicrobial susceptibility complications and neonatal infections. Despite empirical therapy is the rule in cases suspected to have genital infection in Egypt, the surveillance of the susceptibilities of used antibiotics is manda- tory to ensure treatment efficacy and good prevention of any possible complications. This study aimed to assess the infection rate of genital Mycoplasmas (MH and UU) among pregnant females and their antimicrobial susceptibility pattern to provide a provisional idea about the effectiveness of antibiotics used empirically to treat cases of genital infections in pregnant women. High vaginal swabs of 50 pregnant females were examined using Mycoplasma IES kit, for identification of UU and MH. -
Use of Antimicrobials in Swine Feeds in the United States Catherine E
Dewey CE, Cox BD, Straw BE, et al. Use of antimicrobials in swine feeds in the United ORIGINAL RESEARCH States. Swine Health Prod. 1999;7(1):19–25. Use of antimicrobials in swine feeds in the United States Catherine E. Dewey, DVM, PhD; Barbara D. Cox, MS; Barbara E. Straw, DVM, PhD; Eric J. Bush, DVM, MS; Scott Hurd, DVM, PhD combinations of antimicrobials. Creep, starter, and first-stage Summary grower pigs were more likely to be fed antimicrobials than sec- ond-stage growers, finishers, or adult swine (P=.02). Most (92.2%) Objective: To describe the use of in-feed antimicrobials by stage antimicrobials were fed on a continuous basis. The age groups of production in the United States swine industry. most likely to be fed antimicrobials to treat specific problems Methods: National Swine Survey data from 712 farms were col- were nursery, grower, and finisher pigs. The most commonly used lected by the National Animal Health Monitoring System antimicrobials, listed in order of frequency were: tetracyclines, (NAHMS) between 1989 and 1991. Specifically, producers were carbadox, bacitracin, tylosin, apramycin, and lincomycin. asked to record over one 7-day interval the number of feeds they Carbadox, apramycin, and lincomycin were typically added to used, the phases of production to which those feeds were fed, creep and starter feeds. Bacitracin and tylosin were most often and which antimicrobials had been added to the feeds. Produc- used in feeds for grower and finisher pigs. Tetracyclines were fed ers were also asked whether the antimicrobials were used con- to all ages of pigs but were included more frequently in feeds for tinuously or to treat a specific problem. -
Direct Genetic and Enzymatic Evidence for Oxidative Cyclization in Hygromycin B Biosynthesis
Articles Cite This: ACS Chem. Biol. 2018, 13, 2203−2210 Direct Genetic and Enzymatic Evidence for Oxidative Cyclization in Hygromycin B Biosynthesis † † Sicong Li, Jun Zhang, Yuanzhen Liu, Guo Sun, Zixin Deng, and Yuhui Sun* Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China *S Supporting Information ABSTRACT: Hygromycin B is an aminoglycoside antibiotic with a structurally distinctive orthoester linkage. Despite its long history of use in industry and in the laboratory, its biosynthesis remains poorly understood. We show here, by in-frame gene deletion in vivo and detailed enzyme characterization in vitro, that formation of the unique orthoester moiety is catalyzed by the α-ketoglutarate- and non-heme iron-dependent oxygenase HygX. In addition, we identify HygF as a glycosyltransferase adding UDP-hexose to 2-deoxystreptamine, HygM as a methyltransferase responsible for N-3 methylation, and HygK as an epimerase. These experimental results and bioinformatic analyses allow a detailed pathway for hygromycin B biosynthesis to be proposed, including the key oxidative cyclization reactions. ygromycin B is an aminoglycoside antibiotic produced epoxidation,20 desaturation,21 and halogenation22 via radical H by Streptomyces hygroscopicus.1 Since its discovery in the intermediates,17 are responsible for the formation of the 1950s, it has become widely used as a veterinary drug to orthoester linkage. However, no authentic uncyclized precursor control infections of intestinal parasites in chickens and swine. of orthoesters has been isolated so far, and no direct In biological studies, hygromycin B also serves as a useful biochemical evidence for their function has been presented. -
WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
Third ESVAC Report
Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency. -
Danmap 2006.Pmd
DANMAP 2006 DANMAP 2006 DANMAP 2006 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark Statens Serum Institut Danish Veterinary and Food Administration Danish Medicines Agency National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Editors: Hanne-Dorthe Emborg Danish Zoonosis Centre National Food Institute, Technical University of Denmark Mørkhøj Bygade 19 Contents DK - 2860 Søborg Anette M. Hammerum National Center for Antimicrobials and Contributors to the 2006 Infection Control DANMAP Report 4 Statens Serum Institut Artillerivej 5 DK - 2300 Copenhagen Introduction 6 DANMAP board: National Food Institute, Acknowledgements 6 Technical University of Denmark: Ole E. Heuer Frank Aarestrup List of abbreviations 7 National Veterinary Institute, Tecnical University of Denmark: Sammendrag 9 Flemming Bager Danish Veterinary and Food Administration: Summary 12 Justin C. Ajufo Annette Cleveland Nielsen Statens Serum Institut: Demographic data 15 Dominique L. Monnet Niels Frimodt-Møller Anette M. Hammerum Antimicrobial consumption 17 Danish Medicines Agency: Consumption in animals 17 Jan Poulsen Consumption in humans 24 Layout: Susanne Carlsson Danish Zoonosis Centre Resistance in zoonotic bacteria 33 Printing: Schultz Grafisk A/S DANMAP 2006 - September 2007 Salmonella 33 ISSN 1600-2032 Campylobacter 43 Text and tables may be cited and reprinted only with reference to this report. Resistance in indicator bacteria 47 Reprints can be ordered from: Enterococci 47 National Food Institute Escherichia coli 58 Danish Zoonosis Centre Tecnical University of Denmark Mørkhøj Bygade 19 DK - 2860 Søborg Resistance in bacteria from Phone: +45 7234 - 7084 diagnostic submissions 65 Fax: +45 7234 - 7028 E. -
Apramycin, Colistin, Neomycin and Paramomycin Mic Distribution from Clinical Isolates of Klebsiella Pneumoniae
Pathology and Hygiene APRAMYCIN, COLISTIN, NEOMYCIN AND PARAMOMYCIN MIC DISTRIBUTION FROM CLINICAL ISOLATES OF KLEBSIELLA PNEUMONIAE Saggiorato M. 1*, Scandurra S. 1, Pradella G. 1, Bacchin C. 2, Guolo A. 2, Agnoletti F. 2 1ELI LILLY Italia S.p.A., Divisione Elanco Animal Health, Via Gramsci 733, Sesto Fiorentino (FI), Italy 2Istituto Zooprofilattico Sperimentale delle Venezie, Viale Brigata Treviso 13/a, 31100 Treviso, Italy *Corresponding author: [email protected] ABSTRACT Antimicrobial therapy continues to be important in reducing losses due to enteric forms of Klebsiella pneumoniae subsp. pneumoniae (K. pneumoniae ) disease in rabbit intensive farms, in which this bacterium is frequently isolated from the gastrointestinal tract of suckling rabbits, between the 2 nd and 4th week of age, showing a case history of diarrhoea. Commonly K. pneumoniae is characterized by a high resistance to the antimicrobials and for this reason is important to have up to date information in order to define a precision therapy according to principles of antibiotics judicious use guidelines. Although the enteric forms caused by K. pneumoniae diseases have been documented as frequent and economically important in France, Spain and Italy, there are no published reports on the antimicrobial activity of approved compounds against Italian strains. In this study, the authors report the activity of 4 different antimicrobials against 32 recovered isolates of K. pneumoniae. These isolates represent accessions from 2 geographic regions of the North-eastern Italy (Veneto and Friuli Venezia Giulia) where the rabbit breeding represent a widespread zootechnical practice. The minimum inhibitory concentration (MIC) values were determined by agar dilution according to the protocol proposed by NCCLS/CLSI (M31-A2 manual, 2004).