Cephalopoda: Mollusca) Inhabiting Both the Egyptian Mediterranean and the Red Sea Waters

Total Page:16

File Type:pdf, Size:1020Kb

Cephalopoda: Mollusca) Inhabiting Both the Egyptian Mediterranean and the Red Sea Waters Jordan Journal of Natural History, 7, 2020 Pages: 64- 92 Taxonomical Studies on the Cephalopods (Cephalopoda: Mollusca) Inhabiting both the Egyptian Mediterranean and the Red Sea Waters Rafik Riad National Institute of Oceanography and Fisheries, Alexandria, Egypt Received: August 12, 2020; Revised: October 2, 2020; Accepted: October 22, 2020 Abstract: Specimens were obtained Introduction from fishing trawlers operating in the Egyptian Mediterranean Sea, the Suez Cuttlefishes, Squids, Octopuses, and Nautilii Gulf, and the Red Sea. Specimens were are the most important representatives of also obtained from Alexandria and Suez the class Cephalopoda. The class includes fish markets. The species included in the about 1000 known species, which represent class Cephalopoda are ecologically and about 2.07% from the phylum Mollusca commercially important around the world. (Hassan, 1974). As a group, they include The class includes four groups: Cuttlefishes, the largest species of both modern and fossil Squids, Octopuses, and Nautilii. The first invertebrates in the coastal and the oceanic three groups are present in the Egyptian waters, inhabiting different kinds of grounds. Mediterranean and the Red Sea waters. Commercially, they represent a remarkable They constitute a main component in the and significant fishery in many areas around fisheries industry. In order to understand the the world. From the total catch of the world biology and ecology of any species, their cephalopod fishery, about 71.8% were squids, identification should be conducted properly 13.6% cuttlefishes, and 14.6% octopuses to maximize the accuracy of any study. The (Jereb and Roper 2005). present work is the first-in-kind, and was Many studies at the beginning of prepared to focus on the cephalopod species the nineteenth century concentrated on the inhabiting both the Egyptian Mediterranean fauna of the northern part of the Gulf of and the Red Sea waters. Six cephalopod Suez. Savigny (1817) was the first to mention species inhabit both the Egyptian Cephalopoda in the Red Sea; he also identified Mediterranean and the Red Sea waters; seventy species which had not been confirmed these include one cuttlefish species: Sepia before in the Red Sea waters (Edwards and dollfusi, two squid species: Loligo Head, 1987). forbesi and Sepioteuthis lessonian, and three Many twentieth-century studies of the octopus species: Octopus vulgaris, Octopus Red Sea have provided an exciting direction macropus, and Octopus defilippi. Two to many expeditions. Although most of these of them, namely Sepia dollfusi, and, expeditions were oceanographic explorations, Sepioteuthis lessoniana dwelling in the they also served as zoogeographical studies Red Sea and migrated to the Mediterranean with regional details (Edwards and Head, 1987). waters through the Suez Canal. Specimen Robson (1926) recorded three cephalopod parts were drawn by means of a zoom species from the Cambridge Expedition stereoscopic microscope provided with a camera lucida drawing tube and the specimen to the Suez Canal, namely: Ascarosepion parts were also photographed by a Canon singhalensis (Goodrich), which is digital camera. synonymous to Sepia pharaonis Ehrenberg, 1831, Lophosepion lefebrei d’Orbigny Key words: Taxonomy, Cephalopods, synonymous to Sepia gibba Ehrenberg, Mollusca, Egyptian. Mediterranean Sea, 1831, and Octopus horridus d’Orbigny Red Sea. (Zebra Octopus). Robson (1926) recorded six cephalopod species from the Suez Canal. *Corresponding author: [email protected] Rafik Riad 65 Adam (1959) described ten cephalopods morphological features. The aim of the present from the Gulf of Suez and three from the work is to add more information to the limited Gulf of Aqaba. Adam (1960) recorded taxonomical studies of the Cephalopoda seven cephalopod species from Aqaba Gulf. species inhabiting both the Egyptian Red and Eman (1984) recorded eight cephalopods the Mediterranean Sea waters. from the Gulf of Suez and Aqaba. About ten Sepioidea species were recorded Materials and Methods from the Egyptian waters (Steuer, 1939; Emam, 1983; Riad, 1993; 2000a, 2000b, The specimens were obtained from 2008a, 2008b and 2015.). Steuer (1939) fishing trawlers operating in the Egyptian recorded one Sepioidea species. Sepia Mediterranean Sea from Sidi Abd El- Rahman, officinalis from the Mediterranean Sea, Sepia west of Alexandria to Rosetta (Figure 1) prashadi, and Sepia savignyi from the Red sea and from the Suez Gulf, Red Sea (Figure were studied by Emam (1983). Riad (1993) 2). Specimens were also obtained from recorded nine cephalopoda species from the Alexandria and Suez fish markets over the Egyptian Mediterranean waters, two of them period from January 2019 to December 2019. were sepioidea: Sepia officinalis and Sepia The samples were preserved in a 5% formalin elegans. Four were squids: Loligo vulgaris, sea water solution, and were kept in the Loligo forbesi, Alloteuthis media, and Illex Taxonomy and Biodiversity of Aquatic Biota coindetii. Emam and Saad (1998) studied Lab. (reference collection center), National the morphometric and population dynamics Institute of Oceanography and Fisheries, of Sepia dollfusi from the northern region of Alexandria, Egypt. the Red sea. According to Roper et al., (1984), There are also many studies the following characteristics were carefully conducted during the twenty century. Emam examined for the identification of the species: and Aly (2000) studied the male reproductive External morphology, tentacular club, system of the Seoioteuthis lessoniana from hectocotylized arm, tentacular club sucker, the Suez Gulf. Riad (2008b) recorded tentacular club sucker ring, arm sucker, arm one new record of cephalopoda species sucker ring, radula, gill, shell, and funnel Sepioteuthis lessoniana from the Egyptian (siphon). The specimen parts were drawn by Mediterranean waters which migrated means of a zoom stereoscopic microscope from the Red sea. Emam and Gareb (2010) provided with a camera-lucida drawing tube. studied the morphology, the digestible The specimen parts were also photographed and reproductive system of the male of by a Canon Digital camera. Sepioteuthis lessoniana from Abo Qir Bay in the Alexandria Mediterranean waters. Riad Results and Discussion (2000b) recorded two first record species from Alexandria Mediterranean waters, The species in the present work are illustrated namely Rossia macrosoma and Octopus as follows: defillipi. Riad (2008a) recorded ten cephalopod species from the Suez Gulf and Phylum: Mollusca the Red Sea, three of them were sepioidea: Class: Cephalopoda Cuvier, l798. Sepia dollfusi, Sepia pharaonis, and Sepia Subclass: Coleoidea Bather, l888. elongate. Riad (2015) recorded one new Order: Sepioidea Naef, 1916. record of Sepioidea species, namely Sepia Family: Sepiidae Keferstein, 1866. dollfusi from the Egyptian Mediterranean Genus Sepia Linnaeus, 1758 waters which is dewlling in the Red Sepia dollfusi Adam, 1941b. The Suez Gulf, Sea and migrated to the Mediterranean Sea the Red Sea and Alexandria, Mediterranean through the Suez Canal. waters. The present work was conducted using 66 Jordan Journal of Natural History, 7, 2020 Figure 1. Alexandria coast (Egyptian Mediterranean Sea) Figure 2. Suez Gulf (Egyptian Red Sea) Rafik Riad 67 Order:Teuthoidea Naef, 1916. (Gereb and Roper, 2005). In the Egyptian Suborder:Myopsida d, Orbigny, 1845. Mediterranean waters and the Red Sea, this Family: Loligonidae Steenstrup, 1861. order is represented by only one family, Genus Loligo Schneider, 1784. Sepiidae, which has a significant commercial Loligo forbesi Steemstrup, 1856. The Suez value. Gulf, the Red Sea. Alexandria Mediterranean 1.3 Sepioidea Species of the East waters. Mediterranean Waters Genus: Sepioteuthis Seven Sepioidea species are known to occur Sepioteuthis lessoniana Lsson, 1830. The in the Mediterranean waters: Suez Gulf, the Red sea, and Alexandria Sepia elegans BlainVille, 1827; Mediterranean waters. Sepia officinalis Linnaeus, 1758; Order: Octopoda Leach, 1818. Sepia orbignyana Ferussac, 1826; Suborder Incirrata Grimpe, 1916. Sepiola rondeleti Leach, 1817; Family: Octopodidae d›Orbigny, 1845. Sepietta oweniana d›Orbigny, 1840; Subfamily: Octopodinae Rondeletiola minor Naef, 1912; and Genus Octopus Lamarck, 1798. Rossia macrosoma Delle chiaje, 1829 (Gereb Octopus Vulgaris Cuvier, l797. Alexandria, and Roper, 2005; ; Katagan and Kocatas, Mediterranean waters and the Red Sea. 1990). Octopus macropus Risso, 1826. Alexandria, Mediterranean waters and the Red Sea The Sepioidea species were recorded in Octopus Defilippi Verany, 1851. Alexandria, both the Egyptian Mediterranean and the Mediterranean waters, and the Red Sea. Red Sea waters). Phylum: Mollusca The following species were recorded as Class: Cephalopoda Cuvier, 1798 follows: Subclass: Coleoid Bather, 1888. Class: Cephalopoda Cuvier, l798. The Subclass Coleoidea embraces four Subclass: Coleoidea Bather, l888. orders: Sepioidea Naef, 1916; Tauthoidea Order: Sepioidea Naef, 1916. Naef, 1916; Octopoda Leach, 1818, and Family: Sepiidae Keferstein, 1866. Vampyromorpha Pickford, 1939. Genus: Sepia Linnaeus, 1758. Only the first three orders are represented in A cuttlebone with a spine (rostrum) is present the current study. on the posterior end (occasionally damaged or Order: Sepioidea Naef, 1916. absent); as long as the body; bordered by a This order is characterized by the following horny margin. No glandular pore on the ventral features: shell calcareous or chitinous; 10 surface at the posterior end of the
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Signs of an Extended and Intermittent Terminal Spawning In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Signs of an extended and intermittent terminal spawning in the squids Loligo vulgaris Lamarck and Loligo forbesi Steenstrup (Cephalopoda: Loliginidae) Francisco Rocha*, Angel Guerra Instituto de Investigaciones Marinas (CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain *Corresponding author. Tel.: + 34 86 231930; Fax: +34 86 292762 Abstract The reproductive pattern of Loligo vulgaris and Loligo forbesi was studied on the basis of gonad maturation, mating and spawning in males and females of both species which were present off the northwest coast of Spain (Galicia), between February 1991 and February 1993. The mature females of both species have several modes of egg sizes and developmental stages within the ovary. Several signs indicate that both female Loligo vulgaris and L. forbesi undergo partial ovulation at the time of spawning, the spawning period being relatively long, although in no case representing the greatest fraction of the animal’s life before death. Egg-laying occurring in separate batches and somatic growth between egg batchs has not been observed. This reproductive pattern is defined as intermittent terminal spawning. Some other terms describing different cephalopod reproductive strategies are also defined. Keywords: Loligo forbesi; Loligo vulgaris; NW Atlantic; Reproduction; Spawning patterns 1. Introduction Until recently, it was generally accepted that female cephalopods lay their eggs in one single spawning or in several consecutive ones, with no pause between each, after which they would die by exhaustion (McGowan, 1954; Mangold, 1987; Harman et al., 1989; Mangold et al., 1993).
    [Show full text]
  • Caribbean Reef Squid)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010).
    [Show full text]
  • Molecular Evidence for Co-Occurring Cryptic Lineages Within the Sepioteuthis Cf
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/259326231 Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans ARTICLE in HYDROBIOLOGIA · DECEMBER 2013 Impact Factor: 2.28 · DOI: 10.1007/s10750-013-1778-0 CITATIONS READS 5 86 11 AUTHORS, INCLUDING: Frank E. Anderson Gusti Ngurah Mahardika Southern Illinois University Carbondale Udayana University 33 PUBLICATIONS 635 CITATIONS 42 PUBLICATIONS 110 CITATIONS SEE PROFILE SEE PROFILE Z.A. Muchlisin, Ph.D Kolliyil Sunilkumar Mohamed Syiah Kuala University Central Marine Fisheries Research Insti… 97 PUBLICATIONS 210 CITATIONS 88 PUBLICATIONS 198 CITATIONS SEE PROFILE SEE PROFILE Available from: Samantha H. Cheng Retrieved on: 20 October 2015 Hydrobiologia DOI 10.1007/s10750-013-1778-0 CEPHALOPOD BIOLOGY AND EVOLUTION Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans S. H. Cheng • F. E. Anderson • A. Bergman • G. N. Mahardika • Z. A. Muchlisin • B. T. Dang • H. P. Calumpong • K. S. Mohamed • G. Sasikumar • V. Venkatesan • P. H. Barber Received: 18 December 2012 / Accepted: 30 November 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The big-fin reef squid, Sepioteuthis cf. from nearly 400 individuals sampled from throughout lessoniana (Lesson 1930), is an important commodity the Indian, Indo-Pacific, and Pacific Ocean portions of species within artisanal and near-shore fisheries in the the range of this species. Phylogenetic analyses using Indian and Indo-Pacific regions. While there has been maximum likelihood methods and Bayesian inference some genetic and physical evidence that supports the identified three distinct lineages with no clear geo- existence of a species complex within S.
    [Show full text]
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Spermatophore Transfer in Illex Coindetii (Cephalopoda: Ommastrephidae)
    Spermatophore transfer in Illex coindetii (Cephalopoda: Ommastrephidae) TREBALL DE FI DE GRAU GRAU DE CIÈNCIES DEL MAR EVA DÍAZ ZAPATA Institut de Ciències del Mar (CSIC) Universitat de Barcelona Tutors: Fernando Ángel Fernández-Álvarez i Roger Villanueva 05, 2019 RESUMEN CIENTÍFICO La transmisión de esperma desde el macho a la hembra es un proceso crítico durante la reproducción que asegura la posterior fecundación de oocitos. Durante el apareamiento, los machos de los cefalópodos incrustan en el tejido de la hembra paquetes de esperma denominados espermatóforos mediante un complejo proceso de evaginación conocido como reacción espermatofórica. Estos reservorios de esperma incrustados en el cuerpo de la hembra se denominan espermatangios. En este estudio se han analizado machos y hembras maduros de Illex coindetii recolectados desde diciembre del 2018 hasta abril del 2019 en la lonja de pescadores de Vilanova i la Geltrú (Mediterráneo NO). El objetivo de este estudio es entender cómo se produce la transmisión de los espermatóforos en esta especie carente de órganos especiales para el almacenamiento de esperma (receptáculos seminales). En los ejemplares estudiados se cuantificó el número de espermatóforos y espermatangios y mediante experimentos in vitro se indujo la reacción espermatofórica para describir el proceso de liberación del esperma. Los resultados han demostrado que los machos maduros disponen entre 143 y 1654 espermatóforos y las hembras copuladas presentan entre 35 y 668 espermatangios en su interior. La inversión reproductiva en cada cópula realizada por los machos oscila entre el 2 y el 40 % del número de espermatóforos disponibles en un momento dado. En experimentos realizados in vitro, la reacción espermatofórica se inicia espontáneamente tras entrar el espermatóforo en contacto con el agua de mar.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Temporal Variation in Growth Rates and Reproductive Parameters in the Small Near-Shore Tropical Squid Loliolus Noctiluca; Is Cooler Better?
    MARINE ECOLOGY PROGRESS SERIES Vol. 218: 167–177, 2001 Published August 20 Mar Ecol Prog Ser Temporal variation in growth rates and reproductive parameters in the small near-shore tropical squid Loliolus noctiluca; is cooler better? George D. Jackson1,*, Natalie A. Moltschaniwskyj2 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, PO Box 252-77, Hobart, Tasmania 7001, Australia 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1-370, Launceston, Tasmania, 7250, Australia ABSTRACT: Seasonal growth rates and size- and age-at-maturity were analysed for the small near- shore tropical loliginid squid Loliolus noctiluca off North Queensland, Australia, over a period of 2 yr. Age of individuals was determined using daily statolith increments. The life cycle of L. noctiluca off North Queensland was just over 4 mo. Analysis of growth found that growth was non-asymptotic, and the form of the curve; exponential, linear or log-linear, depended on sex and season that individuals were caught. Winter-caught individuals were the fastest growing and achieved the largest size com- pared with summer or autumn-caught individuals. Furthermore, females grew faster than males dur- ing the winter. The patterns of growth of L. noctiluca were compared between tropical North Queensland and temperate New South Wales. The temperate individuals lived longer and had slower growth rates. There was also a marked seasonal influence on the onset of sexual maturity among the North Queensland population, with the fastest growing winter-caught individuals matur- ing later than the autumn or summer individuals. L. noctiluca has a large latitudinal range from New Guinea to Tasmania, this study, and published work, suggests a trend towards increased lifespan and decreased growth rate with increasing latitude.
    [Show full text]
  • Argonauta Argo Linnaeus, 1758
    Argonauta argo Linnaeus, 1758 AphiaID: 138803 PAPER NAUTILUS Animalia (Reino) > Mollusca (Filo) > Cephalopoda (Classe) > Coleoidea (Subclasse) > Octopodiformes (Superordem) > Octopoda (Ordem) > Incirrata (Subordem) > Argonautoidea (Superfamilia) > Argonautidae (Familia) Natural History Museum Rotterdam Natural History Museum Rotterdam Sinónimos Argonauta argo f. agglutinans Martens, 1867 Argonauta argo f. aurita Martens, 1867 Argonauta argo f. mediterranea Monterosato, 1914 Argonauta argo f. obtusangula Martens, 1867 Argonauta argo var. americana Dall, 1889 Argonauta bulleri Kirk, 1886 Argonauta compressus Blainville, 1826 Argonauta corrugata Humphrey, 1797 Argonauta corrugatus Humphrey, 1797 Argonauta cygnus Monterosato, 1889 Argonauta dispar Conrad, 1854 Argonauta ferussaci Monterosato, 1914 Argonauta grandiformis Perry, 1811 Argonauta haustrum Dillwyn, 1817 Argonauta haustrum Wood, 1811 Argonauta minor Risso, 1854 Argonauta monterosatoi Monterosato, 1914 Argonauta monterosatoi Coen, 1915 Argonauta naviformis Conrad, 1854 1 Argonauta pacificus Dall, 1871 Argonauta papyraceus Röding, 1798 Argonauta papyria Conrad, 1854 Argonauta papyrius Conrad, 1854 Argonauta sebae Monterosato, 1914 Argonauta sulcatus Lamarck, 1801 Ocythoe antiquorum Leach, 1817 Ocythoe argonautae (Cuvier, 1829) Referências original description Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp., available
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]