Paving the Path to Narrowband 5G with LTE Internet of Things (Iot)

Total Page:16

File Type:pdf, Size:1020Kb

Paving the Path to Narrowband 5G with LTE Internet of Things (Iot) Paving the path to Narrowband 5G with LTE Internet of Things (IoT) Qualcomm Technologies, Inc. June, 2016 IoT — a massive surge of smart, interconnected “things” Decades of industry experience Broad portfolio of technologies Qualcomm Technologies, Inc. is a proven, trusted solution provider for IoT 1B+ IoT devices shipped globally1 1 Cumulative shipment using Qualcomm technologies; includes SoC, Cellular, Bluetooth, Wi-Fi , GNSS and PLC, stats as of April 2016 2 Connecting the IoT requires heterogeneous connectivity Powered by global standards with seamless interoperability across multiple vendors Cellular Wi-Fi Bluetooth GNSS/Location NFC Powerline Creating a Throughput Reliability Node density connectivity fabric Coverage Security for everything Cost Battery life To support the wide range of IoT use cases with varying requirements Latency Mobility 3 Cellular technologies enable a wide range of IoT services Smart cities Connected building Lighting, traffic sensors, Security, video surveillance, smart parking,… smoke detectors,… Mobile health Connected industrial Wearables, gateways, Process/equipment monitoring, remote patient,… >5B HVAC, … Smart utilities IoT connections Connected retail Smart grid, gas/water/ by 20251 Vending machines, ATM, electric meters digital ads,… Environmental monitoring Asset tracking Agriculture, forecast fire/ Fleet management, pet/kid air pollution sensors,… trackers, shipping,… Ubiquitous Always-on Reliable Global coverage connectivity and secure ecosystem 1 Including Cellular & LPWA M2M connections, Machina Research, June, 2016 4 We are evolving LTE for the Internet of Things New narrowband technologies to more efficiently support IoT use cases Scaling up in performance and mobility Scaling down in complexity and power Today New narrowband IoT technologies (3GPP Release 13+) LTE Cat-4 and above LTE Cat-1 LTE Cat-M1 (eMTC) Cat-NB1 (NB-IoT) >10 Mbps Up to 10 Mbps Variable rate up to 1 Mbps 10s of kbps n x 20 MHz 20 MHz 1.4 MHz narrowband 200 kHz narrowband Mobile Video security Wearables Object tracking Utility metering Environment monitoring Connected car Energy management Connected healthcare City infrastructure Smart buildings 5 LTE IoT delivers significant value for LPWA1 applications Over non-3GPP solutions Ubiquitous coverage Mature ecosystem Established networks serving Backed by global standards with billions of connections worldwide a rich roadmap to 5G Scalability Managed QoS To address the wide Based on licensed spectrum range of IoT use cases with a redundant network design Coexistence End-to-end security Leverages existing and planned Established/trusted security and LTE infrastructure and spectrum authentication features built in 1 Low-power, wide-area 6 Paving the path to 5G NB-IoT is the foundation for Narrowband 5G; continuing to evolve in Release 14+ Scales down LTE to address the broadest range of IoT use cases Optimizes to lowest cost/power for delay- tolerant, low-throughput IoT use cases 3GPP 5G NR further enhances massive IoT with new capabilities such as RSMA1 & multi-hop mesh 1 Resource Spread Multiple Access 7 Delivering new narrowband LTE IoT technologies As part of 3GPP Release 13 Two new LTE IoT technologies, one unified LTE platform LTE Cat-1 n x 20 MHz and above > 1 Mbps +15 dB LTE Cat-M1 (eMTC) Broadest range of IoT capabilities LTE Cat-M1 Faster data rates with support for advanced features, 1.4 MHz Full-to-limited mobility e.g. voice support Up to 1 Mbps Voice/VoLTE support Many IoT devices can benefit from +5 dB multi-mode operations to optimize Performance for different traffic profiles and RF LTE Cat-NB1 Ultra low-cost conditions 1 200 kHz Ultra low-power range - 10s of kbps Delay-tolerant LTE Cat-NB1 (NB-IoT) Scalable to lowest cost/power for wireless Short delay-tolerant, low-throughput IoT use cases, e.g. remote sensors Coverage 1 Examples include Bluetooth, Wi-Fi, NFC, and others 9 LTE IoT reduces complexity, extends battery life & coverage Through optimizations to both the air interface and core network Reduced complexity Multi-year battery life Deeper coverage Higher node density Narrowband operation Enhanced power save modes Achieve up to 20 dB increase Signaling and other network (1.4 MHz or 200 kHz) plus further and more efficient signaling, in link budget for hard-to-reach optimizations, e.g. overload device and core network e.g. extended DRX locations via redundant control, to support a large complexity reductions sleep cycles transmissions number of devices per cell Coexistence with today’s mobile broadband services Leveraging existing infrastructure and spectrum 10 New LTE IoT device categories reduce LTE complexity To enable low-cost modules optimized for small, infrequent data transmissions LTE Cat-1 LTE Cat-M1 LTE Cat-NB1 (Today) (Rel-13) (Rel-13) Peak data rate DL: 10 Mbps DL: 1 Mbps DL: ~20 kbps UL: 5 Mbps UL: 1 Mbps UL: ~60 kbps Simplified Bandwidth 20 MHz 1.4 MHz 200 kHz RF hardware Reduces baseband Rx antenna MIMO Single Rx Single Rx complexity and decreases memory Duplex mode Full duplex Supports half duplex Half duplex FDD/TDD FDD/TDD FDD only Transmit power 23 dBm 20 dBm1 20 dBm1 Higher throughput, lower latency, full mobility 1 Integrated PA possible 11 Delivering multi-year battery life Devices wake up on a per-need basis; stay asleep for minutes, hours, even days Extended DRx Page Up to 40+ minutes vs. today’s monitoring upper limit of 2.56 seconds Data transfer Data Data transfer Data Data transfer Data PSM Power consumption Power Device not reachable consumption Power Sleep Sleep Time Time Power save mode (PSM) Extended discontinuous receive (eDRx) Eliminates page monitoring between data transmissions Extends time between monitoring for network messages For device-originated or scheduled applications, e.g., For device-terminated applications, e.g., object tracking, smart metering, environmental monitoring smart grid Also features such as reduced complexity and less channel measurements extend battery life Note: PSM and eDRx applicable to both Cat-M1 and Cat-NB1; may also be applied to LTE Cat-1 and above 12 Numerous technology enablers for deeper coverage To reach challenging locations, e.g. penetrating more walls & floors LTE Cat-NB1 Cat-NB1 only 1,2 Up to 164 dB • Further relaxed requirements, e.g. timing • Low-order modulation, e.g. QPSK • Option for single-tone uplink transmissions LTE Cat-M1 Cat-M1 and Cat-NB1 >155.7 dB • Repetitive transmissions & TTI bundling for redundancy • Narrowband uplink transmissions LTE Cat-1 Baseline 140.7 dB Trading off spectral efficiency and latency 1 Link budget; 2 At least for standalone operation mode 13 Coexisting with today’s LTE services Cat-M1 and Cat-NB1 can leverage existing LTE infrastructure and spectrum <0.1% Data capacity for Mobile Cat-M1 Multimode Cat-NB1 IoT traffic based on devices devices Cat-M1/NB1 devices 1 sample scenario devices Cat-M1 channel Reuse center 6 PRB2 for synchronization; data channel can operate across entire LTE band for most efficient coexistence with today’s traffic Regular LTE New synchronization anchor channels are in Wideband Control Wideband Cat-NB1 channel restricted narrowband locations; may also be deployed standalone3 or in LTE guard band 1 Assumptions: ISD Urban – 500m, 3 cells per site, Channel b/w 10MHz, Cell capacity: DL 14Mbps, UL 9.6Mbps; Traffic types include data and commands for Electric Meter, Water Meter, Security Panel, HVAC - Residential, Outdoor Street Light, Off Street Parking Meter, Parking Space Sensor, Water Assets; 100% of traffic assumed in 6hr. busy period; 2 Physical Resource Block; 3 Including re-farming of GSM spectrum 14 Cat-M1 (eMTC) efficient coexistence with today’s services Narrowband operation of 1.4 MHz1 across entire LTE band Supports FDD or TDD spectrum Co-existence Time and Frequency-Division Multiplexing Regular data between LTE IoT and today’s existing Cat-M1 Data services, e.g. mobile broadband (User 1) Regular data 2 Legacy Synch Regular data Flexible capacity Cat-M1 SIB3 Wideband Control Wideband Cat-M1 Data Multiple narrowband regions with (User 2) frequency retuning to support scalable resource allocation between LTE IoT Initial cell search Scheduling Data transmission 4 and acquisition and non-IoT traffic 1 1.08 MHz used by the network to transmit 6 RBs in-band; 2 PSS/SSS/PBCH; 3 SIB (System Information Block); 4 Also supports frequency hopping within LTE band for diversity 15 Cat-NB1 (NB-IoT) flexible deployment options Dedicated NB carrier — supports FDD spectrum only in Rel-13 In-band Guard-band Standalone NB-IoT NB-IoT NB-IoT NB-IoT Regular Regular LTE Data LTE Data Guard-band Guard-band Utilizing single Resource Block (180 Utilizing unused resource blocks Utilizing stand-alone 200 kHz kHz) within a normal LTE carrier within a LTE carrier’s guard-band carrier, e.g. re-farming spectrum currently used by GERAN systems New optimized NB-IoT synchronization, control, and data channels 16 Delivering IoT optimizations to the network architecture Also part of 3GPP Release 13 MME S-GW P-GW More efficient Simplified Core Network Enhanced resource signaling (EPC-lite) management To support a larger number of devices Reduced functionality, e.g. limited Such as optimizations to allow a large per cell with new features such as mobility and no voice, makes possible set of devices to share the same group-based paging and messaging for integrating network functions into subscription, e.g. all the water a single entity meters in a city Optional optimizations so that mobile operators can effectively balance CAPEX vs. OPEX decisions 17 Small cells add value to LTE IoT deployments Venues Industrial Residential Enterprise/Buildings Cities Improved coverage Longer battery life More deployment options Bringing the network closer for Allowing devices to reduce uplink Leveraging neutral hosts to provide deeper reach indoors and more transmit power, minimizing overall IoT connectivity in shared/unlicensed reliable connectivity power consumption spectrum (e.g.
Recommended publications
  • NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
    VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications.
    [Show full text]
  • Remote SIM Provisioning Over Narrowband Iot
    Remote SIM Provisioning over Narrowband IoT White Paper | November 2020 Contents: NB-IoT is gaining momentum NB-IoT is gaining momentum The Internet of Things (IoT) is growing rapidly, with 27 billion connected Overcoming limitations with RSP devices predicted to be deployed by 2025 (Machina Research 2016). All these NB-IoT roaming: work in progress devices will require safe, reliable and ubiquitous connectivity to deliver NB-IoT and MNOs valuable insights that help drive efficiencies and gain competitive edge. Data messaging, protocols Cellular technologies are ideally positioned and scaled to deliver this, but the and availability increasing variety of new IoT devices and services is calling for new cellular NB-IoT modules ready for RSP technologies to satisfy specific connectivity needs. Growing the ecosystem Narrowband IoT (NB-IoT) is one of the top emerging low power, wide area networking (LPWAN) cellular technologies that satisfy the growing demand Is it plausible to employ for off-grid connectivity for very large deployments of low-complexity IoT devices. remote SIM provisioning NB-IoT technology offers great power efficiency, system capacity and spectral over Narrowband IoT? efficiency at a low price. Easy to set up, it has already been launched by 96 This is the question on Operators across 54 countries, where they continue to invest in its rollout, footprint the lips of many IoT and inter-operator global roaming agreements (Figures as of August 2020). innovators looking to It promises a wide range of benefits to different stakeholders: leverage the benefits of NB-IoT cellular For manufacturers of IoT devices, it is a more economical alternative if compared to LTE-M, due to the lower device connectivity.
    [Show full text]
  • Narrowband Iot Introduction
    Wireless IoT Technologies and Applications - Narrowband IoT Introduction Rachel Wang Senior Engineer Hong Kong Applied Science and Technology Research Institute (ASTRI) May, 2016 ASTRI Proprietary Agenda Market and Applications 3 3 Narrowband IoT (NB- 1 of Cellular Internet of 2 Things (IoT) IoT) technology 3 NB-IoT standardization 3 3 4 Summary in 3GPP ASTRI Proprietary 2 Market forecast of cellular IoT Connections forecast 2014-2022 (Millions) 2.7 billion devices for IoT will be wirelessly connected via cellular network by 2022 according to several research companies’ forecast. ASTRI Proprietary 3 Interconnection – one key aspect of IoT Inter- sensing connection Processing Which communication technology is the competitive candidate for long distance, low cost and highly reliable interconnection? ASTRI Proprietary 4 Communication technologies comparison Multiple Standards Power consumption largely dependent on transmission range and protocol https://community.freescale.com/community/the-embedded-beat/blog/2010/03/30/so-many-wireless-connectivities--wont-one- size-fit-all Cellular communication can enable more applications of IoT. ASTRI Proprietary 5 Applications of cellular IoT (1) Source: Huawei, NB-IoT white paper, 2015 ASTRI Proprietary 6 Applications of cellular IoT (2) Water/gas/electricity metering Public lighting/water rush/smoke sensor monitor and control Modern agriculture: Monitor the temperature and humidity of field Monitor the health of forest/flower and etc. Monitor the place and health of animal in the farm/water
    [Show full text]
  • 5G for Iot? You're Just in Time
    White Paper 5G for IoT? You’re Just in Time. A SIERRA WIRELESS WHITE PAPER With all the talk about 5G these days, it can be hard to decipher what is applicable for IoT applications, when it will be available and what the transition looks like for platforms currently on 2G, 3G or 4G technologies. The good news is that for companies in the IoT, true 5G is still on the horizon, making now the perfect time to start planning for its arrival. The 5th generation of cellular technology, commonly referred to as 5G, is slowly becoming a reality. What started in 2012 in the standards bodies has now evolved into a set of wireless technologies that are making the transition from standardization to commercialization. This paper looks at what that means for deployments in the Internet of Things (IoT). White Paper HOW ARE CELLULAR 5G is Coming in Waves STANDARDS DEFINED? The transition to 5G isn’t happening all at once. As with 3G and 4G before it, 5G is The International arriving in phases, following a path to commercialization that reflects what’s easiest Telecommunications Union to deploy. That means fixed wireless has come first, with consumer and industrial (ITU), the United Nations agency applications following thereafter. tasked with coordinating telecommunications operations 2018 2019 2020 2021+ and services worldwide, provides guidance by outlining the requirements for cellular operation. The 3rd Generation Partnership Project, better known WAVE 1 WAVE 2 WAVE 3 WAVE 4 Fixed Wireless Consumer Internet of 5G Future as the 3GPP, follows this ITU Access Cellular Things Use Cases guidance to develop specifications.
    [Show full text]
  • 4G to 5G Networks and Standard Releases
    4G to 5G networks and standard releases CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives Provide an overview of various technologies and standards of 4G and future 5G 2 Agenda I. 4G and LTE networks II. LTE Release 10 to 14 III. 5G 3 Agenda I. 4G and LTE networks 4 LTE/SAE 1. 4G motivations 5 Introduction . Geneva, 18 January 2012 – Specifications for next-generation mobile technologies – IMT-Advanced – agreed at the ITU Radiocommunications Assembly in Geneva. ITU determined that "LTELTELTE----AdvancedAdvancedAdvanced" and "WirelessMANWirelessMANWirelessMAN----AdvancedAdvancedAdvanced" should be accorded the official designation of IMTIMT----AdvancedAdvanced : . Wireless MANMAN- ---AdvancedAdvancedAdvanced:::: Mobile WiMax 2, or IEEE 802. 16m; . 3GPPLTE AdvancedAdvanced: LTE Release 10, supporting both paired Frequency Division Duplex (FDD) and unpaired Time Division Duplex (TDD) spectrum. 6 Needs for IMT-Advanced systems Need for higher data rates and greater spectral efficiency Need for a Packet Switched only optimized system Use of licensed frequencies to guarantee quality of services Always-on experience (reduce control plane latency significantly and reduce round trip delay) Need for cheaper infrastructure Simplify architecture of all network elements 7 Impact and requirements on LTE characteristics Architecture (flat) Frequencies (flexibility) Bitrates (higher) Latencies (lower) Cooperation with other technologies (all 3GPP and
    [Show full text]
  • 5G NR Mobile Device Test Platform ME7834NR Brochure
    Product Brochure 5G NR Mobile Device Test Platform ME7834NR Trusted Performance Based on Long-term Market Presence and Reputation Anritsu has delivered high quality Conformance Test solutions that exceed customer expectations since the beginning of 3G and that tradition continues today with 5G Anritsu test solutions deliver state-of-the-art technology to our customers for conformance and carrier acceptance testing based on our industry leading experience. Market Leading 3GPP Compliant Test Cases Market Leading 5G Carrier Acceptance Test Anritsu delivers first to market test cases compliant to Anritsu delivers state of the art Carrier Acceptance test the latest 3GPP specifications. cases supporting all major carriers to test the latest LTE and NR features for carrier compliance. 2 Trusted Performance Based on Long-term Market Presence and Reputation Anritsu has delivered high quality Conformance Test solutions that exceed customer expectations since the beginning of 3G and that tradition continues today with 5G Anritsu test solutions deliver state-of-the-art technology to our customers for conformance and carrier acceptance testing based on our industry leading experience. Market Leading 3GPP Compliant Test Cases Market Leading 5G Carrier Acceptance Test Anritsu delivers first to market test cases compliant to Anritsu delivers state of the art Carrier Acceptance test the latest 3GPP specifications. cases supporting all major carriers to test the latest LTE and NR features for carrier compliance. 3 5G NR Mobile Device Test Platform ME7834NR Features Key Features 5G NR Mobile Device Test Platform ME7834NR supports both protocol conformance test (PCT) and carrier acceptance test (CAT) for UE manufacturers and test houses.
    [Show full text]
  • Understanding Mmwave for 5G Networks 1
    5G Americas | Understanding mmWave for 5G Networks 1 Contents 1 Introduction ..................................................................................................................................................... 6 2 Status of Millimeter Wave Spectrum ............................................................................................................. 9 2.1 Regional Status ........................................................................................................................................... 9 2.2 Global Millimeter Wave Auctions .............................................................................................................12 3 Millimeter Wave Technical Rules in the United States ...............................................................................15 3.1 Licensed Spectrum ..................................................................................................................................15 3.2 Lightly Licensed .......................................................................................................................................16 3.3 Unlicensed Spectrum ..............................................................................................................................17 4 Millimeter Wave Challenges and Opportunities ..........................................................................................19 4.1 Losses in Millimeter Wave .......................................................................................................................19
    [Show full text]
  • Enabling Massive Iot Toward 6G: a Comprehensive Survey Fengxian Guo, F
    1 Enabling Massive IoT Toward 6G: A Comprehensive Survey Fengxian Guo, F. Richard Yu, Fellow, IEEE, Heli Zhang, Xi Li, Hong Ji, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE Abstract—Nowadays, many disruptive Internet of things (IoT) in the future, including holographic communications, five- applications emerge, such as augmented/virtual reality (AR/VR) sense communications, and wireless brain-computer interfaces online games, autonomous driving, and smart everything, which (WBCI), which will lead to a true immersion into a distant are massive in number, data-intensive, computation-intensive, and delay-sensitive. Due to the mismatch between the fifth gen- environment. At the same time, advances in personal com- eration (5G) and the requirements of such massive IoT-enabled munications will promote the evolution of smart verticals in applications, there is a need for technological advancements and the fifth generation networks (5G) to a higher level, including evolutions for wireless communications and networking toward healthcare, remote education/training, industry Internet, fully the sixth generation (6G) networks. 6G is expected to deliver autonomous driving, and super smart homes/cities. During extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, this paradigm shift, the Internet of Things (IoT) plays a vital which will play a significant role in supporting massive IoT role in enabling these emerging applications by connecting devices to operate seamlessly with highly diverse service require- the physical environment to the cyberspace of communication ments. Motivated by the aforementioned facts, in this paper, systems [1]. we present a comprehensive survey on 6G-enabled massive IoT.
    [Show full text]
  • Iot Whitepaper
    IoT Solution Whitepaper WHITEPAPER, MARCH 2019 THE GAME CHANGER FOR THE INTERNET OF THINGS 1 IoT Solution Whitepaper INTRODUCTION The Internet of Things (IoT) is rapidly creating new ecosystems, revealing new insights and efficiencies, and enabling a vast array of new services and business models. While headline- grabbing IoT applications such as augmented reality or self-driving cars capture the imagination, many IoT use cases do not need to rely on high-performance wireless modules and low-latency, high-bandwidth connectivity. For Low Power Wide Area (LPWA) applications—such as smart metering, tracking of assets, and monitoring equipment—the key requirement is the ability to periodically exchange small amounts of data easily, reliably, and cost-effectively. Unlike most other existing mobile communications technologies, Narrowband IoT (NB-IoT) is optimized for these types of applications—making NB-IoT an ideal network technology for a broad array of IoT solutions. Billions of devices Low data volume Low energy consumption Deep indoor penetration Up to 100x more devices per cell Bidirectional, infrequent transmission Up to 10 years of battery-powered +20 dB link budget (compared (compared to GSM) of low data volumes. Data rates avg operation2 to GSM) 1 throughput of ~60bps 1 Dependent on network utilization and signal strength 2 Assuming equivalent of 2 AA batteries and typical traffic pattern Picture 1: NB-IoT’s core benefits Designed for massive IoT NB-IoT utilizes LTE network operators’ advantages include lower costs, reduced existing assets, such as sites, base stations, power consumption, and deeper indoor In its 2016 Release 13 standards, the 3rd antennae, backhaul, and licensed spectrum.
    [Show full text]
  • 5G Wireless Infrastructure Semiconductor Analysis
    5G WIRELESS INFRASTRUCTURE SEMICONDUCTOR ANALYSIS SIA CONFIDENTIAL | 5G INFRASTRUCTURE ANALYSIS | 1 2 | 5G INFRASTRUCTURE ANALYSIS EXECUTIVE SUMMARY On behalf of SIA, a wireless market intelligence firm has analyzed all of the semiconductor function product families within the key elements of a 5G radio access network (RAN)- baseband unit (BBU) and active antenna unit (AAU)/remote radio unit (RRU) systems for 5G base stations along with the current domestic United States and foreign/international semiconductor suppliers. Our conclusion is that despite the United States maintaining overall market-share leadership in semiconductors with a 45% share of the global market, substitutes for U.S. components exist for nearly every semiconductor product family required to build a complete RAN infrastructure. In fact, our analysis indicates that of the more than fifty critical semiconductor elements necessary to design, manufacture, and sell a competitive 5G RAN network1, only 3 components could face supply constraints outside the United States in the event of an export restriction. For each of those three components, we have further concluded that alternatives are currently being deployed or under active development, especially within China by Huawei’s semiconductor design arm, HiSilicon. 8 | 5G INFRASTRUCTURE ANALYSIS | SIA CONFIDENTIAL OUR CONCLUSION FOR THE BASEBAND UNIT SYSTEM FOR A 5G BASE STATION IS THAT THE TWO KEY SEMICONDUCTOR PRODUCT FAMILIES THAT MAY PRESENT SUPPLY ISSUES OUTSIDE OF THE UNITED STATES ARE: • Commercial off-the-shelf Field
    [Show full text]
  • What Frequency Is 5G (Verizon)
    11/18/2019 What frequency is 5G? | About Verizon eless.com/) Residential (https://www.verizon.com/?lid=//global//residential) m/business/gateway/) About Verizon (/about/) Your Contact us Our Company location: (https://www.verizon.com/Support/Residential/contact- (/about/our-company) Concord, us/index.htm) NH News (/about/news) Change location 11.18.2019 Personal Tech (/about/news-story-categories/personal-tech) What frequency is 5G? (https://w(whtwtp.f:a//cwewb(howto.ttkpw.:c/i/totwemwr/.cswoh.lmainr/keserh/dsaihrnea.c?roemr.p/hshpa?reArticle? u=https://uvrzl=.thot/t3p7si:8m//DivnOzi.=toot)r/u3e7&i8uDrlO=hot&tpvsia:/=/vez.rtioz/o3n7&i8teDxOt=oW&htiatlte%=W20hfaret%qu2e0nfcreyq%u2e0nicsy%%22005iGs%%230F5% From 1G to 5G all cellular networks carry information through the electromagnetic spectrum which includes the radio spectrum https://www.verizon.com/about/our-company/5g/what-frequency-5g?fbclid=IwAR2RIHs8cmcE_pskp6pSYZuXDEVnzq_hmb12fkY_wPSNpD-Q5OUk4f… 1/5 11/18/2019 What frequency is 5G? | About Verizon From 1G to 5G, all cellular networks carry information through the electromagnetic spectrum, which includes the radio spectrum. Some frequency bands within the radio spectrum will be used for 5G, including Verizon’s 5G Ultra Wideband (UWB) network. The following information can help you learn what frequency 5G uses and how that affects the speed and efficiency of the network. What is the radio spectrum? To understand exactly how fast 5G technology is expected to be, it’s important to consider it in relation to other cellular network technologies. If you think back to high school physics, you may recall the electromagnetic spectrum. This includes all the different wavelengths/frequencies you may encounter: Gamma Rays, X-Rays, light and visible rays, microwaves, millimeter waves (mmWave), radio waves (including AM and FM radio) and more.
    [Show full text]
  • Overview of Risks Introduced by 5G Adoption in the United States
    CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE NOTE July 31, 2019; 1200 EDT OVERVIEW OF RISKS INTRODUCED BY 5G ADOPTION IN THE UNITED STATES KEY FINDINGS The Department of Homeland Security (DHS)/Cybersecurity and Infrastructure Security Agency (CISA) assesses that Fifth Generation Mobile Network (5G) will present opportunities and challenges, and its implementation will introduce vulnerabilities related to supply chains, deployment, network security, and the loss of competition and trusted options. Use of 5G components manufactured by untrusted companies could expose U.S. entities to risks introduced by malicious software and hardware, counterfeit components, and component flaws caused by poor manufacturing processes and maintenance procedures. 5G hardware, software, and services provided by untrusted entities could increase the risk of compromise to the confidentiality, integrity, and availability of network assets. Even if U.S. networks are secure, U.S. data that travels overseas through untrusted telecommunication networksi is potentially at risk of interception, manipulation, disruption, and destruction. 5G will use more components than previous generations of wireless networks, and the proliferation of 5G infrastructure may provide malicious actors more attack vectors. The effectiveness of 5G’s security enhancements will in part depend on proper implementation and configuration. Despite security enhancement over previous generations, it is unknown what new vulnerabilities may be discovered in 5G networks. Further, 5G builds upon previous generations of wireless networks and will initially be integrated into 4G Long-Term Evolution (LTE) networks that contain some legacy vulnerabilities. Untrusted companies may be less likely to participate in interoperability efforts. Custom 5G technologies that do not meet interoperability standards may be difficult to update, repair, and replace.
    [Show full text]