Yield and Fruit Properties of Husk Tomato (Physalis Phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia

Total Page:16

File Type:pdf, Size:1020Kb

Yield and Fruit Properties of Husk Tomato (Physalis Phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia horticulturae Article Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia Natalia Naumova 1,* , Taisia Nechaeva 1, Oleg Savenkov 1 and Yury Fotev 2 1 Institute of Soil Science and Agrochemistry SB RAS, Novosibirsk 630090, Russia; [email protected] (T.N.); [email protected] (O.S.) 2 Central Siberian Botanical Garden SB RAS, Novosibirsk 630090, Russia; [email protected] * Correspondence: [email protected] Received: 23 December 2018; Accepted: 7 February 2019; Published: 18 February 2019 Abstract: Husk tomato (Physalis philadelphica Lam.) a source of functional food and medicinal compounds, has attracted renewed interest for production in temperate zones. Field-grown husk tomato yield and fruit properties and their relationship with soil chemistry and temperature were studied in the south of West Siberia, Russia, at five experimental sites. At each site, a microplot experiment with two cultivars was conducted. Basic soil chemical properties and fruit pH and dry matter, total carbon, nitrogen, and ascorbic acid content were determined. Both cultivars grew and yielded very well, producing on average 70 fruits, or 1.46 kg, per plant, with 14 mg ascorbic acid per 100 g fresh weight, 9.0% dry matter, and juice pH of 4.1. Variation in environmental conditions among sites was the major factor determining production and fruit property variation, with cultivar biology accounting for 10%. The cultivars responded differently to some soil properties, but generally their yield and fruit quality depended on soil pH and labile phosphorous and potassium. Thus, husk tomato has remarkable capacity for vigorous yields in unprotected conditions in West Siberia, despite air and soil temperatures that are much lower than in its region of origin. Detailed studies are needed to elucidate its response to varying solar radiation and atmospheric precipitation. Keywords: husk tomato; Physalis philadelphica Lam.; soil chemical properties; fruit quality; ascorbic acid; open field experiment; West Siberia; North Asia 1. Introduction Husk tomato (Physalis philadelphica Lam. (synonymic Physalis ixocarpa Brot.)), also known as Mexican husk tomato, or tomatillo, is the most widely distributed species of Physalis. It is not only an interesting vegetable crop with a wide ecological niche for growing it [1], producing plenty of fruits, but it is also a medicinal plant with a long history of enthnomedicinal use [2,3]. Recently, husk tomato has been enjoying increasing attention in many countries, including Russia, due to new information on its chemical composition [4–6], health benefits, etc. [7–11]. Over the last few decades in Russia, the crop has been grown only by small farmers and individual gardeners; however, the last century saw quite a lot of attention paid to husk tomato. It was introduced into Russia in 1926, and was vigorously studied between 1920 and the 1950s [12], when field experiments were set up at experimental stations throughout the entire country [13]. Industrial production was started in the country in the Far East, where several thousands of hectares were occupied by husk tomato in the 1950s [14]. Currently such countries as the United States, Mexico, Canada, and Spain are the main players in the wholesale tomatillo market [15]. However, in Russia, there is no wide-scale production of husk tomato, and it only receives attention from small farmers and individual gardeners; so, the crop at present has little economic significance nationwide. Horticulturae 2019, 5, 19; doi:10.3390/horticulturae5010019 www.mdpi.com/journal/horticulturae Horticulturae 2019, 5, x FOR PEER REVIEW 2 of 13 husk tomato, and it only receives attention from small farmers and individual gardeners; so, the Horticulturae 2019, 5, 19 2 of 12 crop at present has little economic significance nationwide. Husk tomato as a crop for functional nutrition and novel medicinal use together with global warmingHusk have tomato resulted as a crop in increased for functional interest nutrition in crop and performance novel medicinal assessment use together in areas withpreviously global warmingnot involved have in resulted its cultivation in increased. In the interest south of in cropWest performanceSiberia (55–60° assessment N, 59–84° in E) areas, global previously climate notchange involved has been in itsshown cultivation. to manifest In theitself south in significant of West Siberiapositive (55–60 trends◦ inN, the 59–84 growing◦ E), globalseason climatelength. changeThe latter, has beentogether shown with to manifestincreased itself sums in significantof growing positive degree trendsdays inand the precipitation growing season [16] length., have Theresulted latter, in together a tendency with for increased increased sums producti of growingon across degree the dayssouth and of West precipitation Siberia in [16 the], have past resulted several indecades a tendency. The f forurther increased anticipated production increase across in regional the south plant of West productivity Siberia in [1 the6] actualize past severals studies decades. on Thethe growth, further anticipateddevelopment increase, and yields in regional of more plant warm productivity-climate-loving [16] actualizes vegetable studiescrops, including on the growth, husk development,tomato, in the andopen yields field ofin morethe region warm-climate-loving. vegetable crops, including husk tomato, in the openCultivars field in the may region. react differently to changed environmental conditions, and their yield potential can beCultivars modified may by react many differently factors, including to changed edaphic environmental ones. Currently conditions,, little and is theirknown yield about potential husk cantomato be modified production by manyand possible factors, includingcultivar differences edaphic ones. in the Currently, open field little in is West known Siberia. about huskIn addition tomato, productionthere are no and data possible about biological cultivar differences production in ( thei.e.,open biomass field of in major West Siberia.plant components In addition,, including there are nothose data that about are biologicalnon-consumable production by humans (i.e., biomass) of husk of tomato major plant. However, components, the recent including intensifica thosetion that of arestudies non-consumable on non-consumable by humans) above ofground husk tomato.and/or belowground However, the components recent intensification of various of crops studies have on non-consumableincreased the amount aboveground of attention and/or paid belowground to husk tomato components in this respect of various as well crops. have increased the amountThe of aim attention of th paidis work to husk was tomato to study in this husk respect tomato as well. yield and fruit properties and their relationshipThe aim with of this soil work chemistry was to studyand temperature husk tomato in yield open and field fruit production properties andin the their south relationship of West withSiberia, soil Russia, chemistry during and temperatureone growing in season open field at five production experimental in the southsites ofwith West varying Siberia, soil Russia, and duringenvironmental one growing conditions. season at five experimental sites with varying soil and environmental conditions. 2. Materials and Methods 2.1.2.1. Experimen Experimentaltal Sites To studystudy thethe quantity quantity and and quality quality of of husk husk tomato tomato biological biological production, production, as wellas well as fruit as fruit yield yield and properties,and properties, microplot microplot field experimentsfield experiments were carriedwere carried out at fiveout experimentalat five experimental stations duringstations the during 2016 growingthe 2016 growing season in season the forest-steppe in the forest zone-steppe in West zone Siberia in West (Figure Siberia1). (Figure 1). Figure 1. The locationlocation of the study sites. Horticulturae 2019, 5, 19 3 of 12 The climate of the region is classified as sharply continental, with the average (June, July, August) maximal temperature in summer ranging from 22 to 26 ◦C and the average precipitation ranging from 40 to 65 mm per month, with a 119-day frost-free period. At each experimental station, air (2 m above the soil surface) and soil (at a depth of 1, 10, and 20 cm) temperatures were registered by Thermochron DS1921G data loggers (iButtonLink, USA), and the respective temperature sums were calculated for the duration of the experiment (103 days) (Table1). Table 1. The geographical location of experimental sites and their temperature sums (◦C·day) over the growing period. Site 1 Site 2 Site 3 Site 4 Site 5 Northern 55◦15039.71” 54◦57055.31” 54◦58057.90” 54◦42021.10” 55◦00046.04” latitude Eastern 83◦31042.12” 83◦13009.92” 82◦22043.00” 83◦16002.60” 82◦57027.58” longitude Temperature sums Air 1403 1448 1485 1458 1570 Soil, 1544 1357 1403 1517 1404 1-cm depth Soil, 1387 1325 1338 1536 1381 10-cm depth Soil, 1458 1256 1257 1587 1314 20-cm depth Experiments were conducted on loamy agricultural soils, common to the region, classified as Luvic Greyzemic Phaeozems (Siltic, Aric) according to the World Reference Base for Soil Resources [17]. Overall, the experimental plots had rather high soil organic carbon content and slightly acidic pH, which are favourable for plant growth and development (Table2). Overall, the diversity of the soil properties at the experimental stations where the microplot field experiments were performed allows us to extend the conclusions over a wider gradient of soil and environmental conditions. Table 2. The soil chemical properties at different sites before the start of the microplot field experiments. Site 1 Site 2 Site 3 Site 4 Site 5 pHH2O 5.77 5.91 5.96 6.01 5.65 Soil organic carbon, % 6.7 12.3 11.4 3.2 4.0 N-NH4, mg/kg 1.5 3.0 2.2 2.8 2.3 N-NO3, mg/kg 11 12 56 12 29 P, mg/kg 2.0 11.2 2.7 4.6 18.7 Na, mg/kg 150 117 105 16 14 K, mg/kg 905 342 315 342 362 Mg, mg/kg 519 776 652 101 200 Ca, g/kg 4.2 6.0 5.0 2.9 1.5 2.2.
Recommended publications
  • Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: a Review
    Review Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review Luis A. Puente a,⁎, Claudia A. Pinto-Muñoz a, Eduardo S. Castro a, Misael Cortés b a Universidad de Chile, Departamento de Ciencia de los Alimentos y Tecnología Química. Av. Vicuña Mackenna 20, Casilla, Santiago, Chile b Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimento, A.A. 568 Medellin Colombia abstract The main objective of this work is to spread the physicochemical and nutritional characteristics of the Physalis peruviana L. fruit and the relation of their physiologically active components with beneficial effects on human health, through scientifically proven information. It also describes their optical and mechanical properties and presents micrographs of the complex microstructure of P. peruviana L. fruit and studies on the antioxidant Keywords: capacity of polyphenols present in this fruit. Physalis peruviana Bioactive compounds Functional food Physalins Withanolides Contents 1. Introduction .............................................................. 1733 2. Uses and medicinal properties of the fruit ................................................ 1734 3. Microstructural analysis ........................................................ 1734 4. Mechanical properties of the fruit .................................................... 1735 5. Optical properties of the fruit ...................................................... 1735 6. Antioxidant properties of fruit
    [Show full text]
  • The Cape Gooseberry and the Mexican Husk Tomato
    MORTON AND RUSSELL: CAPE GOOSEBERRY 261 LITERATURE CITED Seedling Plantings in Hawaii. Hawaii Agric. Expt. Sta. Bui. 79: 1-26. 1938. 1. Pope, W. T. The Macadamia Nut in Hawaii. 10. Howes, F. N. Nuts, Their Production and Hawaii Agric. Exp. Sta. Bui. 59: 1-23. 1929. Everyday Use. 264 pp. London, Faber & Faber. 2. Hamilton, R. A. and Storey, W. B. Macadamia 1953. Nut Varieties for Hawaii Orchards. Hawaii Farm Sci., 11. Cooil, Bruce J. Hawaii Agric. Exp. Sta. Bien 2: (4). 1954. nial Report—1950-52: p. 56. ft. Chell, Edwin and Morrison, F. R. The Cultiva 12. Beaumont, J. H. and Moltzau, R. H. Nursery tion and Exploitation of the Australian Nut. Sydney, Propagation and Topworking of the Macadamia. Ha Tech. Museum Bui. 20: 1935. waii Agric?. Exp. Sta. Cir. 13: 1-28. 1937. 4. Francis, W. D. Australian Rain Forest Trees. 13. Fukunaga. Edward T. Grafting and Topwork 469 pp. Sydney and London, Angus and Robertson: ing the Macadamia. Univ. of Hawaii Agric. Ext. Cir. 1951 58: 1-8. 1951. 5. Bailey, L. H. Manual of Cultivated Plants. N. Y.f 14. Storey, W. B., Hamilton, R. A. and Fukunaga, McMillan. 1949. E. T. The Relationship of Nodal Structures to Train 6. Chandler, Wm. H. Evergreen Orchards. 352 pp.: ing Macadamia Trees. Am. Soc. Hort. Sci. Proc. 61: Philadelphia, Lea & Febiger. 1950. pp. 317-323. 1953. 7. Schroeder, C. A. The Macadamia Nut. Calif. 15. Anonymous. Insect Pests and Diseases of Agric, p. 3: April 1954. Plants. Queensland Agriculture and Pastoral Hand 8. Miller, Carey D.
    [Show full text]
  • Of Physalis Longifolia in the U.S
    The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity.
    [Show full text]
  • Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis Ixocarp) Is a Small Edible Fruit in the Solanaceae Family
    Center for Crop Diversification Crop Profile Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis ixocarp) is a small edible fruit in the Solanaceae family. A tan to straw-colored calyx covers the fruit-like a husk, giving rise to the common name of “husk tomato.” Native to Mexico and Guatemala, these tomato-like fruits are a key ingredient in a number of Latin American recipes, including salsa and chili sauces. Tomatillo may have potential as a specialty crop in some areas of Kentucky. Marketing Tomatillos are sold by Kentucky farms through direct marketing channels, including farmers markets, CSAs and roadside stands. Market potential may be greater at farmers markets in areas with larger Hispanic increasing U.S. Hispanic populations. Local groceries, as well as restaurants population helped establish specializing in Mexican or vegetarian dishes, may tomatillo as a nationwide be interested in purchasing locally grown tomatillos. commodity within wholesale produce marketing Production of tomatillo for direct sale to smaller channels. Producers considering growing tomatillo specialty food manufacturers, or for use in foods will likely have more success with fresh market prepared by the producer, may also be an option for Kentucky growers. retail sales in larger urban areas such as Louisville, Lexington, or Cincinnati. Novel or distinctive Large-scale production requires accessing wholesale tomatillos, such as varieties with purple coloration, marketing channels. Most fresh market shipments could be offered alongside classic green tomatillos; are sourced from Mexico and California; Florida and however, producers should identify the preferences Michigan also ship through the commercial fresh of potential customers, as some may prefer certain market in the summer.
    [Show full text]
  • The Complete Genome Sequence, Occurrence and Host Range Of
    Li et al. Virology Journal (2017) 14:15 DOI 10.1186/s12985-016-0676-2 RESEARCH Open Access The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate Yueyue Li1†, Yang Wang1†, John Hu2, Long Xiao1, Guanlin Tan1,3, Pingxiu Lan1, Yong Liu4* and Fan Li1* Abstract Background: Tomato mottle mosaic virus (ToMMV) is a recently identified species in the genus Tobamovirus and was first reported from a greenhouse tomato sample collected in Mexico in 2013. In August 2013, ToMMV was detected on peppers (Capsicum spp.) in China. However, little is known about the molecular and biological characteristics of ToMMV. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and rapid identification of cDNA ends (RACE) were carried out to obtain the complete genomic sequences of ToMMV. Sap transmission was used to test the host range and pathogenicity of ToMMV. Results: The full-length genomes of two ToMMV isolates infecting peppers in Yunnan Province and Tibet Autonomous Region of China were determined and analyzed. The complete genomic sequences of both ToMMV isolates consisted of 6399 nucleotides and contained four open reading frames (ORFs) encoding 126, 183, 30 and 18 kDa proteins from the 5’ to 3’ end, respectively. Overall similarities of the ToMMV genome sequence to those of the other tobamoviruses available in GenBank ranged from 49.6% to 84.3%. Phylogenetic analyses of the sequences of full-genome nucleotide and the amino acids of its four proteins confirmed that ToMMV was most closely related to Tomato mosaic virus (ToMV). According to the genetic structure, host of origin and phylogenetic relationships, the available 32 tobamoviruses could be divided into at least eight subgroups based on the host plant family they infect: Solanaceae-, Brassicaceae-, Cactaceae-, Apocynaceae-, Cucurbitaceae-, Malvaceae-, Leguminosae-, and Passifloraceae-infecting subgroups.
    [Show full text]
  • Quick Scan Tomato Mottle Mosaic Virus
    Quick scan National Plant Protection Organization, the Netherlands Quick scan number: 2020VIR001 Quick scan date: 4 November 2020 No. Question Quick scan answer for Tomato mottle mosaic virus 1. What is the scientific name (if Tomato mottle mosaic virus (ToMMV), genus Tobamovirus, family Virgaviridae possible up to species level + author, also include (sub)family and order) and English/common name of the organism? Add picture of organism/damage if available and publication allowed. 2. What prompted this quick scan? ToMMV is (currently) not regulated in the EU. For the related tobamovirus tomato brown rugose fruit virus Organism detected in produce for (ToBRFV), however, emergency measures have been in place since November 2019 (EU, 2019 and 2020). import, export, in cultivation, ToBRFV has been found causing damage to tomato and pepper crops in the EU since it is able to nature, mentioned in publications, overcome resistances of current cultivars (Luria et al., 2017). The fact that ToMMV shares characteristics e.g. EPPO alert list, etc. with ToBRFV (Li et al., 2017), is reason for drafting this quick scan. In addition, Australia has implemented emergency measures for ToMMV and requires tomato and pepper seed lots to be imported, to be tested and found free from this virus (https://www.agriculture.gov.au/import/goods/plant- products/seeds-for-sowing/emergency-measures-tommv-qa#what-is-tomato-mottle-mosaic-virus- tommv). 3. What is the current area of CABI distribution map, retrieved 7-7-2020, 11-6-2020 distribution? Pagina 1 van 6 No. Question Quick scan answer for Tomato mottle mosaic virus Present in Asia: China (Li et al., 2014), Iran, Israel (Turina et al., 2016) Europe: Spain (Ambros et al., 2017) America: Brasil (Nagai et al., 2018) Mexico (Li et al., 2013) USA (Webster et al., 2014) ToMMV may have a wider distribution than currently known.
    [Show full text]
  • Husk Tomato, Ground Cherry
    Yard and Garden – 09-11-2010- Ted Griess/ Extension Horticulture Assistant I‟d like to share with you a recent learning experience. It all began with an email from Mike. Subject: Husk tomato, ground cherry “Ted, I planted ground cherries ( Physalis pruinosa) this year and have noticed there is a similar weed around that has different looking leaves but very similar blooms and paper husks as the variety I ordered through the mail. …. the type I planted are very tasty… Can you tell me if the local weed I see around is also edible? Thanks, Mike” Fortunately, Mike contacted me via email and not over the telephone. Although I am familiar with an assortment of tomato varieties, the husk tomato was not one. Had Mike phoned me rather than email, I would have had to show my ignorance, but fortunately with an email, time was on my side. Before responding, I conducted a little research. Being vaguely familiar with the weed Mike referenced, the first thing I did was reach for my Weeds of the Great Plains book. I use this reference book frequently when I wish to know more about a particular weed. The book is published by the Nebraska Department of Agriculture. All information presented is factual and research based. While reading, I soon discovered that the husk tomato/ground cherry, which Mike planted, belonged to the same genus as the weed. The weed, clammy ground cherry grows wild in Nebraska, and its scientific name is Physalis heterophylla. Knowing this similarity, I soon understood why Mike wanted to know more about the weed.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Aquilegia Newsletter of the Colorado Native Plant Society
    Aquilegia Newsletter of the Colorado Native Plant Society IN THIS ISSUE Forty Years of Progress in Pollination Biology Return of the Native: Colorado Natives in Horticulture Climate Change and Columbines The Ute Learning and Ethnobotany Garden Volume 41 No.1 Winter 2017 The Urban Prairies Project Book Reviews Aquilegia Volume 41 No. 1 Winter 2017 1 Aquilegia: Newsletter of the Colorado Native Plant Society Dedicated to furthering the knowledge, appreciation, and conservation of native plants and habitats of Colorado through education, stewardship, and advocacy AQUILEGIA: Newsletter of the Colorado Native Plant Society Inside this issue Aquilegia Vol . 41 No . 1 Winter 2017 Columns ISSN 2161-7317 (Online) - ISSN 2162-0865 (Print) Copyright CoNPS © 2017 News & Announcements . 4 Aquilegia is the newsletter of the Colorado Native Plant Letter to the Editor . 9 Society . Members receive four regular issues per year (Spring, Summer, Fall, Winter) plus a special issue for the Workshops . 10 Society Annual Conference held in the Fall . At times, Chapter Programs & Field Trips . 11 issues may be combined . All contributions are subject to editing for brevity, grammar, and consistency, with final Conservation Corner: Conserving Colorado’s Native Plants . 23 approval of substantive changes by the author . Articles Garden Natives . 30 from Aquilegia may be used by other native plant societ- Book Reviews . 31 ies or non-profit groups, if fully cited to the author and attributed to Aquilegia . The deadline for the Spring 2017 Articles issue is March 15 and for the Summer issue is June 15 . 40 Years of Progress in Pollination Biology . 14 Announcements, news, articles, book reviews, poems, botanical illustrations, photographs, and other contribu- Return of the Native: Colorado Native Plants in Horticulture .
    [Show full text]
  • Solanaceae – Nightshade (Tomato) Family
    SOLANACEAE – NIGHTSHADE (TOMATO) FAMILY Plant: herbs, woody vines, shrubs and trees Stem: Root: Leaves: simple (rarely pinnate) and alternate except sometimes on the upper stem opposite; no stipules Flowers: perfect; often showy; mostly (4)5 sepals, often persistent and partially fused; mostly (4)5 petals, sometimes tubular; stamens usually 5 (rarely 2 or 4) and alternate to corolla lobes; ovary superior, 1 style, stigma usually lobed Fruit: capsule (2-chambered) or berry, usually many seeds, often oily Other: large family; some poisonous; others include – peppers, tomato, potato, eggplant, tobacco and many ornamentals such as Petunia; Dicotyledons Group Genera: 95+ genera; locally Datura, Solanum (nightshade) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Solanaceae (Nightshade or Tomato Family) Examples of some common genera Gray Five Eyes [Ground Saracha] Chamaesaracha coniodes (Moric. Garden Petunia ex Dunal) Britton Petunia ×atkinsiana D. Don ex Loud. Bittersweet [Deadly] Nightshade [axillaris × integrifolia] (Introduced) Solanum dulcamara L. var. dulcamara Jimsonweed [Thorn Apple] Datura stramonium L. (Introduced). Clammy Groundcherry Physalis heterophylla Nees var. Garden Egg Plant heterophylla Solanum melongena L. (Introduced) Christmas Berry [Carolina Desert-Thorn] Chinese Lantern [Plains Purple Ground Cherry] Sticky Nightshade Lycium carolinianum Walter Quincula lobata (Torr.) Raf. Solanum sisymbriifolium Lam. var. carolinianum SOLANACEAE – NIGHTSHADE (TOMATO) FAMILY Gray Five Eyes [Ground Saracha]; Chamaesaracha coniodes (Moric. ex Dunal) Britton Jimsonweed [Thorn Apple]; Datura stramonium L. (Introduced). Christmas Berry [Carolina Desert-Thorn]; Lycium carolinianum Walter var. carolinianum Garden Petunia; Petunia ×atkinsiana D. Don ex Loud. [axillaris × integrifolia] (Introduced) Cutleaf Groundcherry; Physalis angulata L. Coastal [Narrow Leaf] Groundcherry; Physalis angustifolia Nutt.
    [Show full text]
  • Downloaded from the National Center for Biotechnology Information Database
    J. AMER.SOC.HORT.SCI. 144(5):363–374. 2019. https://doi.org/10.21273/JASHS04735-19 DNA Barcoding of the Solanaceae Family in Puerto Rico Including Endangered and Endemic Species Lumariz Hernandez Rosario, Juan O. Rodríguez Padilla, Desiree Ramos Martínez, Alejandra Morales Grajales, Joel A. Mercado Reyes, Gabriel J. Veintidos Feliu, Benjamin Van Ee, and Dimuth Siritunga1 Department of Biology, University of Puerto Rico Mayaguez Campus, Mayaguez, PR 00680 ADDITIONAL INDEX WORDS. species identification, psbA-trnH, matK, ITS ABSTRACT. The Solanaceae family is one of the largest and well-distributed plant families in the world. It contains species of agricultural and economical importance, such as Solanum tuberosum, Solanum melongena, Solanum lycopersicum, Nicotiana tabacum, and Capsicum annuum. In Puerto Rico, there are ’46 species of Solanaceae of which six are endemic: Brunfelsia densifolia, Brunfelsia lactea, Brunfelsia portoricensis, Goetzea elegans, Solanum ensifolium, and Solanum woodburyi. Our objective was to use DNA barcoding to identify the Solanaceae species in Puerto Rico, including the endemics, and to assess the species relationships between them. To accomplish our objective, two chloroplast regions (psbA-trnH and matK) and a nuclear region [internal transcribed spacer (ITS)] were assessed. Pairwise distance and phylogenetic analysis demonstrate that DNA barcoding can be used to discriminate at the species level among these taxa in Puerto Rico. For all three markers, the genus that showed the highest pairwise distance between represented species was Solanum, whereas the genus that displayed the least was Capsicum. Phylogenetic trees of single and concatenated regions were generated from sequences obtained in this study and from data downloaded from the National Center for Biotechnology Information database.
    [Show full text]
  • PICKING PICKY FLOWERS: TESTING COMPATIBILITY SYSTEMS in Physalis Acutifolia and the PREDICTABILITY of OUTCROSSING SUCCESS By
    PICKING PICKY FLOWERS: TESTING COMPATIBILITY SYSTEMS IN Physalis acutifolia AND THE PREDICTABILITY OF OUTCROSSING SUCCESS By Alexis C. Kantor Department of Ecology & Evolutionary Biology, University of Colorado at Boulder Date of Defense: October 24, 2018 Thesis Advisor: Dr. Stacey D. Smith, Department of Ecology & Evolutionary Biology Defense Committee: Dr. Stacey D. Smith, Department of Ecology & Evolutionary Biology Dr. Barbara Demmig-Adams, Department of Ecology & Evolutionary Biology Dr. Robert Wyrod, Department of Women & Gender Studies & International Affairs Abstract Although the overarching process of plant breeding biology has received considerable attention in the plant sciences, few studies thoroughly examine the complexities of breeding system variability. Physalis acutifolia is a selF-incompatible (SI) flowering plant in the Solanaceae family native to the southwestern United States. SelF-incompatibility (SI) is a reproductive adaptation that serves to promote outcrossing and increase genetic fitness, and it is the opposite of selF-compatibility (SC), which permits self-fertilization. Occasionally, certain species will be capable of employing more than one reproductive strategy. In P. acutifolia, specimens were collected from a variety of locations in the southwest U.S., and SI and SC populations were identified through preliminary crossing experiments in a greenhouse. Using these data, I focused on pollination crosses of SI and SC populations of P. acutifolia with three other species in the Physalis genus. These designed crosses contained a variety of SI and SC populations, and were intended to test the SI x SC hypothesis, which states that species that are self-compatible are also more likely to be compatible with an SI species, but the converse would not be true.
    [Show full text]