Integration of Molecular Components Into Silicon Memory Devices

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Molecular Components Into Silicon Memory Devices Integration of Molecular Components into Silicon Memory Devices by Werner G. Kuhr onsumer and business appetite for electronic devices drives the C semiconductor industry’s need for miniaturization. The state of the art of semiconductor devices now has critical feature dimensions substantially less than 0.1 µm.1 While many devices can be manufactured effectively at such dimensions through the continued extension and optimiza- tion of existing process technologies, it is uncertain at what point along the path of miniaturization such devices, which rely on the bulk properties of materials, will retain the required func- tional characteristics. Much work has been done in the field of molecular electronics, where many investigators have attempted to mimic transistor properties in molecular systems.1 While FIG. 1. DRAM array (left), with examples of trench and stacked cell geometries for the DRAM capacitor. the creation of a molecular transistor has received the lion’s share of atten- tion (and criticism),2 transistor fabrica- tion is expected to scale to 10 nm dimensions, albeit with a great deal of stored in each device (which, in turn, is the memory industry to develop three- effort.3 Indeed, the component that is based on the voltage and the capaci- dimensional structures to provide most urgently in need of replacement tance available), and the leakage current, enough capacitive area to store sufficient for most semiconductor devices is the along with the number of memory ele- charge to allow reliable operation. With 2 charge storage device, i.e., the capacitor. ments that must be refreshed in each a SiO2 capacitor, almost 5 µm of surface Almost all existing memory devices cycle. Thus, a key design feature in the area is necessary to store ~100 fC of utilize charge storage as the mechanism miniaturization of DRAM circuit ele- charge. Two of the most commonly of information storage [including ments is the amount of available charge employed strategies to increase the effec- dynamic random access memory in each capacitor as feature size shrinks. tive area of the capacitor include trench (DRAM), FLASH RAM, and one-transis- There is increasing evidence that the or stacked structures (Fig. 1). In the tor static RAM (1T SRAM)]. In particu- materials used in existing devices are trench design, a hole is drilled into the lar, DRAM consists of large arrays of unable to scale effectively with the other silicon substrate at the critical dimen- storage cells, each of which consists of circuit elements used in DRAM circuits. sion, and the capacitor is built through one capacitor and one transistor, where For example, a DRAM capacitor in an deposition of the dielectric on the walls the charge stored on the capacitor indi- efficient memory array must occupy a of the cylindrical hole. This can increase cates the bit level (Fig. 1). Due to the surface area corresponding to less than the effective area to over 5 µm2 and pro- combination of stringent requirements 4F2 (allowing for a 6F2 total cell area), vide sufficient capacitance for a reliable for data fidelity for RAM (which where F is the minimum critical feature device, but at significant manufacturing impacts the minimum amount of sig- size of the device. In a 256 MB DRAM cost. In this device, the aspect ratio nal that must be available from each manufactured at the state of the art in a (depth/width) of the trench can be over cell for sensing, currently ~100 fC or production environment, F is 0.11 µm, 100, leading to tremendous process ~600,000 electrons) and that capacitors and this translates to a capacitor area of complexity and cost. Fabrication of the are imperfect, leaky devices (the charge roughly 0.048 µm2, and this cell must be DRAM capacitor in existing devices on an existing DRAM capacitor decays able to operate at less than 2 V. The most already requires over one-third of the rapidly, ~100 ms in existing devices), commonly used dielectric materials used process steps, and this process complexi- the data stored in each location must be for DRAM capacitors have a charge den- ty will increase even more as the aspect refreshed periodically by reading it and sity of 1-2 µC/cm2, and at these dimen- ratio becomes larger with even smaller then writing it back again. The frequen- sions hold only 1 fC, (roughly 6000 elec- devices. As critical dimensions continue cy at which this refresh must be repeat- trons). to shrink, it is likely that this process ed is determined by many factors, Therefore, a tremendous amount of cannot reasonably continue. As dis- including the magnitude of charge time and effort has been expended by cussed in this article, a DRAM based on 34 The Electrochemical Society Interface • Spring 2004 Table I. Criteria for Incorporation of Molecules in CMOS • The charge storage properties are dependent on the molecule, not Storage Devices. the underlying substrate.4-11 • The size of the device dictates the Property Implementation number of molecules (proportion- al to area). Chemical stability ............................................Delocalized cationic charge • Charge is stored in stable redox states of molecules, leading to Thermal stability ..................................................Decomposition > 400° C high charge density (more than Endurance ................................................Endurance > 1012 to 1015 cycles ten times higher than convention- al SiO capacitors).4-10 Read/write speed ..........................................................t = 1/k < 10 ns 2 R/W eff • Charge-retention times are also a Charge retention ..........................................................................t1/2 > 10 s molecular property, not depen- dent on the leakage characteristics 2 Charge density......................................................µ = 10 µC/cm or higher of the gating device, and are in the Self-assembly and ............................Selective, covalent bond formation of range of minutes to hours self-alignment molecules to specific substrate (>10,000 times that of semicon- ductors).9 • Molecules can be attached at high surface coverage (in the range of 1.0 x 10-10 mol cm-2) using small amounts of materials.8-10 • Temperatures as high as 400°C can be used during fabrication with no degradation of the molecules. This result is of importance in that many processing steps in fabricat- ing complementary metal-oxide- semiconductor (CMOS) devices entail high-temperature processing, even at the back end of the line.4 • Devices using porphyrins applied in this manner have been tested for endurance, and no sign of degradation of any aspect of per- formance was observed after 1012 cycles.4 • Multiple bits can be stored in a given memory location using the distinct oxidation states of the molecules, which can lead to high- FIG. 2. Properties of molecules used for charge storage. er array densities.8 • This type of molecular memory should scale to near molecular dimensions, because electronic molecular properties is more suitable for adequate stability, endurance, and oper- properties are intrinsic to the mol- smaller feature sizes. ating properties to meet such require- ecular structure.4-11 ments, and only recently has it been Charge Storage in demonstrated that some molecular Attachment of Redox Monolayers materials may be able to withstand these Molecules to Silicon demanding criteria.4 Some redox sys- Devices Recently, molecules that may be suit- tems have been investigated for use in able for use in semiconductor devices the fabrication of molecular-based infor- The fabrication of stable and reliable have been the subject of much atten- mation storage systems. These systems CMOS/molecular devices requires the tion.4,5 To be able to serve in this role, employ metallocene, porphyrin, and covalent attachment of an electroactive molecular components must remain triple-decker sandwich coordination molecule (such as a porphyrin or a fer- robust under the same daunting condi- compounds as the charge-storage ele- rocene) to a device substrate (e.g., Si). tions that all existing semiconductor ments covalently attached to metals and Attachment of molecules to silicon is 4-11 materials already endure including high- device-grade silicon (Fig. 2). accomplished through covalent linkage temperature processing steps during These molecules exhibit redox char- chemistries involving the formation of 5-11 manufacture and demanding require- acteristics that make them amenable for Si-C or Si-O bonds. It is important ments for operation (see Table I). There use as multibit information-storage to emphasize that the stability of the has been considerable skepticism media. Some key aspects of this technol- bond formed between the substrate and whether molecular materials possess ogy are reviewed below. the redox molecule will dictate the The Electrochemical Society Interface • Spring 2004 35 FIG. 3. Hybrid CMOS/molecular DRAM cell. thermal and electrical stability of the lowed by deposition of a metal layer, charge-retention behavior on the sub- self-assembled monolayer (SAM). For which is evaporated or sputtered on to strate size or material, but a strong example, thiol/gold chemistry, which complete the cell (Fig. 3). This material dependence on the composition and size has been used extensively in many acad- can be any well-behaved electrochemical of the tether separating the redox site emic labs for the characterization of counter electrode material such as cop- from the surface.9,10 The charge reten- monolayer redox systems, does not pro- per, silver, etc.
Recommended publications
  • Time Constant of an Rc Circuit
    ECGR 2155 Instrumentation and Networks Laboratory UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 10 – TIME CONSTANT OF AN RC CIRCUIT OBJECTIVES The purpose of this experiment is to measure the time constant of an RC circuit experimentally and to verify the results against the values obtained by theoretical calculations. MATERIALS/EQUIPMENT NEEDED Digital Multimeter DC Power Supply Alligator (Clips) Jumper Resistor: 20kΩ Capacitor: 2,200 µF (rating = 50V or more) INTRODUCTION The time constant of RC circuits are used extensively in electronics for timing (setting oscillator frequencies, adjusting delays, blinking lights, etc.). It is necessary to understand how RC circuits behave in order to analyze and design timing circuits. In the circuit of Figure 10-1 with the switch open, the capacitor is initially uncharged, and so has a voltage, Vc, equal to 0 volts. When the single-pole single-throw (SPST) switch is closed, current begins to flow, and the capacitor begins to accumulate stored charge. Since Q=CV, as stored charge (Q) increases the capacitor voltage (Vc) increases. However, the growth of capacitor voltage is not linear; in fact it is an exponential growth. The formula which gives the instantaneous voltage across the capacitor as a function of time is (−t ) VV=1 − eτ cS Figure 10-1 Series RC Circuit EXPERIMENT 10 – TIME CONSTANT OF AN RC CIRCUIT 1 ECGR 2155 Instrumentation and Networks Laboratory This formula describes exponential growth, in which the capacitor is initially 0 volts, and grows to a value of near Vs after a finite amount of time.
    [Show full text]
  • Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant
    Sonoma State University Department of Engineering Science Fall 2017 EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant Capacitors Capacitors are devices that can store electric charge similar to a battery (but with major differences). In its simplest form we can think of a capacitor to consist of two metallic plates separated by air or some other insulating material. The capacitance of a capacitor is referred to by C (in units of Farad, F) and indicates the ratio of electric charge Q accumulated on its plates to the voltage V across it (C = Q/V). The unit of electric charge is Coulomb. Therefore: 1 F = 1 Coulomb/1 Volt). Farad is a huge unit and the capacitance of capacitors is usually described in small fractions of a Farad. The capacitance itself is strictly a function of the geometry of the device and the type of insulating material that fills the gap between its plates. For a parallel plate capacitor, with the plate area of A and plate separation of d, C = (ε A)/d, where ε is the permittivity of the material in the gap. The formula is more complicated for cylindrical and other geometries. However, it is clear that the capacitance is large when the area of the plates are large and they are closely spaced. In order to create a large capacitance, we can increase the surface area of the plates by rolling them into cylindrical layers as shown in the diagram above. Note that if the space between plates is filled with air, then C = (ε0 A)/d, where ε0 is the permittivity of free space.
    [Show full text]
  • (ECE, NDSU) Lab 11 – Experiment Multi-Stage RC Low Pass Filters
    ECE-311 (ECE, NDSU) Lab 11 – Experiment Multi-stage RC low pass filters 1. Objective In this lab you will use the single-stage RC circuit filter to build a 3-stage RC low pass filter. The objective of this lab is to show that: As more stages are added, the filter becomes able to better reject high frequency noise When plotted on a Bode plot, the gain approaches two asymptotes: the low frequency gain approaches a constant gain of 0dB while the high-frequency gain drops as 20N dB/decade where N is the number of stages. 2. Background The single stage RC filter is a low pass filter: low frequencies are passed (have a gain of one), while high frequencies are rejected (the gain goes to zero). This is a useful filter to remove noise from a signal. Many types of signals are predominantly low-frequency in nature - meaning they change slowly. This includes measurements of temperature, pressure, volume, position, speed, etc. Noise, however, tends to be at all frequencies, and is seen as the “fuzzy” line on you oscilloscope when you amplify the signal. The trick when designing a low-pass filter is to select the RC time constant so that the gain is one over the frequency range of your signal (so it is passed unchanged) but zero outside this range (to reject the noise). 3. Theoretical response One problem with adding stages to an RC filter is that each new stage loads the previous stage. This loading consumes or “bleeds” some current from the previous stage capacitor, changing the behavior of the previous stage circuit.
    [Show full text]
  • Time Constant Calculations This Worksheet and All Related Files Are
    Time constant calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1 Questions Question 1 Qualitatively determine the voltages across all components as well as the current through all components in this simple RC circuit at three different times: (1) just before the switch closes, (2) at the instant the switch contacts touch, and (3) after the switch has been closed for a long time. Assume that the capacitor begins in a completely discharged state: Before the At the instant of Long after the switch switch closes: switch closure: has closed: C C C R R R Express your answers qualitatively: ”maximum,” ”minimum,” or perhaps ”zero” if you know that to be the case. Before the switch closes: VC = VR = Vswitch = I = At the instant of switch closure: VC = VR = Vswitch = I = Long after the switch has closed: VC = VR = Vswitch = I = Hint: a graph may be a helpful tool for determining the answers! file 01811 2 Question 2 Qualitatively determine the voltages across all components as well as the current through all components in this simple LR circuit at three different times: (1) just before the switch closes, (2) at the instant the switch contacts touch, and (3) after the switch has been closed for a long time.
    [Show full text]
  • Cutoff Frequency, Lightning, RC Time Constant, Schumann Resonance, Spherical Capacitance
    International Journal of Theoretical and Mathematical Physics 2019, 9(5): 121-130 DOI: 10.5923/j.ijtmp.20190905.01 Solar System Electrostatic Motor Theory Greg Poole Industrial Tests, Inc., Rocklin, CA, United States Abstract In this paper, the solar system has been visualized as an electrostatic motor for the research of scientific concepts. The Earth and space have all been represented as spherical capacitors to derive time constants from simple RC theory. Using known wave impedance values (R) from antenna theory and celestial capacitance (C) several time constants are derived which collectively represent time itself. Equations from Electro Relativity are verified using known values and constants to confirm wave impedance values are applicable to the earth antenna. Dark energy can be represented as a tremendous capacitor voltage and dark matter as characteristic transmission line impedance. Cosmic energy transfer may be limited to the known wave impedance of 377 Ω. Harvesting of energy wirelessly at the Earth’s surface or from the Sun in space may be feasible by matching the power supply source impedance to a load impedance. Separating the various the three fields allows us to see how high-altitude lightning is produced and the earth maintains its atmospheric voltage. Spacetime, is space and time, defined by the radial size and discharge time of a spherical or toroid capacitor. Keywords Cutoff Frequency, Lightning, RC Time Constant, Schumann Resonance, Spherical Capacitance the nearest thimble, and so put the wheel in motion; that 1. Introduction thimble, in passing by, receives a spark, and thereby being electrified is repelled and so driven forwards; while a second In 1749, Benjamin Franklin first invented the electrical being attracted, approaches the wire, receives a spark, and jack or electrostatic wheel.
    [Show full text]
  • The RC Circuit
    The RC Circuit The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn’t the time constant defined to be the time it takes the capacitor to become fully charged or discharged? 4. Explain conceptually why the time constant is larger for increased resistance. 5. What does an oscilloscope measure? 6. Why can’t we use a multimeter to measure the voltage in the second half of this lab? 7. Draw and label a graph that shows the voltage across a capacitor that is charging and discharging (as in this experiment). 8. Set up a data table for part one. (V, t (0-300s in 20s intervals, 360, and 420s)) Introduction The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools to measure the voltage as a function of time: a multimeter and a stopwatch. Your lab write-up will deal primarily with data taken in this part. In the second part of the lab, you will use an oscilloscope, a much more sophisticated and powerful laboratory instrument, to observe time behavior of an RC circuit on a much faster timescale. Your observations in this part will be mostly qualitative, although you will be asked to make several rough measurements using the oscilloscope. Part 1. Capacitor Discharging Through a Resistor You will measure the voltage across a capacitor as a function of time as the capacitor discharges through a resistor.
    [Show full text]
  • Voltage Divider Capacitor RC Circuits
    Physics 120/220 Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Voltage Divider 2 The figure is called a voltage divider. It’s one of the most useful and important circuit elements we will encounter. It is used to generate a particular voltage for a large fixed Vin. Vin Current (R1 & R2) I = R1 + R2 Output voltage: R 2 Voltage drop is Vout = IR2 = Vin ∴Vout ≤ Vin R1 + R2 proportional to the resistances Vout can be used to drive a circuit that needs a voltage lower than Vin. Voltage Divider (cont.) 3 Add load resistor RL in parallel to R2. You can model R2 and RL as one resistor (parallel combination), then calculate Vout for this new voltage divider R2 If RL >> R2, then the output voltage is still: VL = Vin R1 + R2 However, if RL is comparable to R2, VL is reduced. We say that the circuit is “loaded”. Ideal voltage and current sources 4 Voltage source: provides fixed Vout regardless of current/load resistance. Has zero internal resistance (perfect battery). Real voltage source supplies only finite max I. Current source: provides fixed Iout regardless of voltage/load resistance. Has infinite resistance. Real current source have limit on voltage they can provide. Voltage source • More common • In almost every circuit • Battery or Power Supply (PS) Thevenin’s theorem 5 Thevenin’s theorem states that any two terminals network of R & V sources has an equivalent circuit consisting of a single voltage source VTH and a single resistor RTH. To find the Thevenin’s equivalent VTH & RTH: V V • For an “open circuit” (RLà∞), then Th = open circuit • Voltage drops across device when disconnected from circuit – no external load attached.
    [Show full text]
  • A Circuit-Level 3D DRAM Area, Timing, And
    ABSTRACT PARK, JONG BEOM. 3D-DATE: A Circuit-Level Three-Dimensional DRAM Area, Timing, and Energy Model. (Under the direction of W. Rhett Davis and Paul D. Franzon.) Three-dimensional stacked DRAM technology has emerged recently. Many studies have shown that 3D DRAM is most promising solutions for future memory architecture to fulfill high bandwidth and high-speed operation with low energy consumption. It is necessary to explore 3D DRAM design space and find the optimum DRAM architecture in different system needs. However, a few studies have offered models for power and access latency calculations of DRAM designs in limited ranges. This has led to a growing gap in knowledge of the area, timing, and energy modeling of 3D DRAMs for utilization in the design process of processor architectures that could benefit from 3D DRAMs. This paper presents a circuit level DRAM Area, Timing, and Energy model (DATE) which supports 3D DRAM design with TSV. DATE provides front-end and back-end DRAM process roadmap from 90 nm to 16 nm node and provides a broader range 3D DRAM design model along with emerging transistor device. DATE is successfully validated against several commodity planar and 3D DRAMs and published prototype DRAMs with emerging device. Energy verification has a mean error of about -5% to 1%, with a standard deviation of up to 9.8%. Speed verification has a mean error of about -13% to -27% and a standard deviation of up to 24%. In the case of the area, the bank has a mean error of -3% and the whole die has a mean error of -1%.
    [Show full text]
  • Transient Circuits, RC, RL Step Responses, 2Nd Order Circuits
    Alpha Laboratories ECSE-2010 Fall 2018 LABORATORY 3: Transient circuits, RC, RL step responses, 2nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators 1st order RC, RL Circuits 2nd order RLC series, parallel circuits Thevenin circuits Part A: Transient Circuits RC Time constants: A time constant is the time it takes a circuit characteristic (Voltage for example) to change from one state to another state. In a simple RC circuit where the resistor and capacitor are in series, the RC time constant is defined as the time it takes the voltage across a capacitor to reach 63.2% of its final value when charging (or 36.8% of its initial value when discharging). It is assume a step function (Heavyside function) is applied as the source. The time constant is defined by the equation τ = RC where τ is the time constant in seconds R is the resistance in Ohms C is the capacitance in Farads The following figure illustrates the time constant for a square pulse when the capacitor is charging and discharging during the appropriate parts of the input signal. You will see a similar plot in the lab. Note the charge (63.2%) and discharge voltages (36.8%) after one time constant, respectively. Written by J. Braunstein Revised by S. Sawyer Fall 2018: 8/23/2018 Rensselaer Polytechnic Institute Troy, New York, USA 1 Alpha Laboratories ECSE-2010 Fall 2018 Written by J. Braunstein Revised by S. Sawyer Fall 2018: 8/23/2018 Rensselaer Polytechnic Institute Troy, New York, USA 2 Alpha Laboratories ECSE-2010 Fall 2018 Discovery Board: For most of the remaining class, you will want to compare input and output voltage time varying signals.
    [Show full text]
  • Microsoft Powerpoint
    RAM (Random Access Memory) Speaker: Lung -Sheng Chien Reference: [1] Bruce Jacob, Spencer W. Ng, David T. Wang, MEMORY SYSTEMS Cache, DRAM, Disk [2] Hideo Sunami, The invention and development of the first trench- capacitor DRAM cell, http://www.cmoset.com/uploads/4.1-08.pdf [3] JEDEC STANDARD: DDR2 SDRAM SPECIFICATION [4] John P. Uyemura, Introduction to VLSI circuits and systems [5] Benson, university physics OutLine • Preliminary - parallel-plate capacitor - RC circuit - MOSFET • DRAM cell • DRAM device • DRAM access protocol • DRAM timing parameter • DDR SDRAM SRAM Typical PC organization. Cache: use SRAM main memory : use DRAM Basic organization of DRAM internals DRAM versus SRAM Dynamic RAM Static RAM • Random access: each location in Cost Low High memory has a unique address. The Speed Slow Fast time to access a given location is # of transistors 1 6 independent of the sequence of Density High Low prior accesses and is constant. target Main memory Cache DRAM cell ( 1T1C cell ) Question 1 : what is capacitor? SRAM cell Question 2 : what is transistor? Electric flux electric flux = number of field lines passing though a surface 1 uniform electric field, electrical flux is defined by ΦE =E ⋅ A 2 if the surface is not flat or field is not uniform, then one must sum contributions of all tiny elements of area Φ≈E EAEA1 ⋅∆+ 1 2 ⋅∆+ 2 =∑ EAj ⋅∆→ j ∫ EdA ⋅ Gauss’s Law flux leaving surface = flux entering surface net flux is 0, say Φ=E ∫ E ⋅ dA = 0 Gauss’s Law : net flux through a closed surface is proportional to net charge enclosed
    [Show full text]
  • Calculating the Time Constant of an RC Circuit
    Undergraduate Journal of Mathematical Modeling: One + Two Volume 2 | 2010 Spring Article 3 2010 Calculating the Time Constant of an RC Circuit Sean Dunford University of South Florida Advisors: Arcadii Grinshpan, Mathematics and Statistics Gerald Woods, Physics Problem Suggested By: Gerald Woods Follow this and additional works at: https://scholarcommons.usf.edu/ujmm Part of the Mathematics Commons UJMM is an open access journal, free to authors and readers, and relies on your support: Donate Now Recommended Citation Dunford, Sean (2010) "Calculating the Time Constant of an RC Circuit," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 2: Iss. 2, Article 3. DOI: http://dx.doi.org/10.5038/2326-3652.2.2.3 Available at: https://scholarcommons.usf.edu/ujmm/vol2/iss2/3 Calculating the Time Constant of an RC Circuit Abstract In this experiment, a capacitor was charged to its full capacitance then discharged through a resistor. By timing how long it took the capacitor to fully discharge through the resistor, we can determine the RC time constant using calculus. Keywords Time Constant, RC circuit, Electronics Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This article is available in Undergraduate Journal of Mathematical Modeling: One + Two: https://scholarcommons.usf.edu/ujmm/vol2/iss2/3 Dunford: Calculating the Time Constant of an RC Circuit 2 SEAN DUNFORD TABLE OF CONTENTS Problem Statement ..................................................................................................................
    [Show full text]
  • Physics 2306 Experiment 10: Time-Dependent Circuits, Part 2
    Name___________________ ID number_________________________ Date____________________ Lab partner_________________________ Lab CRN________________ Lab instructor_______________________ Physics 2306 Experiment 10: Time-dependent Circuits, part 2 Objectives • To study the frequency dependent properties of capacitors in RC circuits • To study the frequency dependent properties of inductors in RL circuits • To study the time dependent behavior of a series RLC circuit Required background reading • Young and Freedman, sections 30.1 – 30.6 Introduction In this lab, we will revisit capacitors and study more of their properties in a circuit where the driving signal varies with time. Please review the introduction section to Lab 7, Time-Dependent Circuits part 1. It will refresh your memory about the properties of RC circuits and the general behavior of exponential growth and decay curves. We will then study inductors as circuit elements and their behavior in circuits where the driving signal varies with time. Inductors are circuit elements that make use of the phenomenon known as electromagnetic induction. As you learned in last week’s lab on magnetism, the principle of electromagnetic induction is described by Faraday’s law. It states that a changing magnetic flux through a loop causes an induced emf around the loop. A typical inductor consists of a coil of many loops of wire. An example of one is the coil on the upper right hand side of your circuit board. When a time-varying current is passed through the inductor, there is time-varying magnetic field generated. This causes a changing magnetic flux between the coils and a resulting induced emf (or voltage) across the inductor. This can be stated mathematically with the relation: dI V = −L dt 1 where V is the voltage across the inductor, and I is the current passing through it.
    [Show full text]