LINC00355 Induces Gastric Cancer Proliferation and Invasion Through

Total Page:16

File Type:pdf, Size:1020Kb

LINC00355 Induces Gastric Cancer Proliferation and Invasion Through Zhao et al. Cell Death Discovery (2020) 6:99 https://doi.org/10.1038/s41420-020-00332-9 Cell Death Discovery ARTICLE Open Access LINC00355 induces gastric cancer proliferation and invasion through promoting ubiquitination of P53 Wenjing Zhao1,YanJin1,PengWu1,JianYang1, Yuanyuan Chen2,QianluYang2,XinyingHuo1, Juxue Li2,WeiDe2, Jinfei Chen3,4 and Fen Yang2 Abstract Long noncoding RNAs (LncRNAs) have been reported to play critical roles in gastric cancer, but true biomarkers remain unknown. In this study, we found a new lncRNA LINC00355 that was involved in malignant progression of gastric cancer (GC) and further revealed its role and mechanism. Differentially expressed lncRNAs were identified through bioinformatics, and qRT-PCR was used to validate the expression of LINC00355 in gastric cancer tissues and cells. The biological role of LINC00355 in GC was detected by gene overexpression and knockdown experiments. Subcellular fractionation, qRT-PCR, and FISH were performed to detect the subcellular localization. Co-IP and western blotting were used to study the ubiquitination-mediated regulation of P53 and the expression of the E3 ligases RAD18 and UBE3C. The results showed that LINC00355 was significantly increased in gastric cancer cell lines and patient tissues and closely correlated with late stages, distant metastasis, and poor prognosis of patients. High expression of LINC00355 promoted the proliferation and invasion of gastric cancer cells in vivo and in vitro. Mechanistic studies found that LINC00355 that mainly located in the nucleus, acting as a transcriptional activator, promoted transcription of RAD18 and UBE3C, which both bind to P53 and mediate the ubiquitination and degradation of P53. Furthermore, LINC00355 overexpression enhanced the ubiquitination process, and LINC00355 knockdown alleviated it. These results indicated that LINC00355 induces gastric cancer cell proliferation and invasion by promoting transcription of RAD18 and UBE3C, which mediates 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; ubiquitination of P53 and thereby plays a critical role in survival and tumorigenicity of gastric cancer cells. LINC00355 may represent a new mechanism for GC progression and provide a potential marker for GC diagnosis and treatment. Introduction main methods for treating gastric cancer, but patients Gastric cancer (GC) is the fifth most frequently diag- with advanced gastric cancer do not have the option of nosed cancer and the third leading cause of cancer-related surgery, and the prognosis is very poor4,5. Therefore, death worldwide1. Although there are many available elucidating the molecular biological mechanism of gastric methods for screening gastric cancer, many patients are cancer is indispensable for finding a sensitive diagnostic still diagnosed at advanced stages, and some patients are method for early gastric cancer and improving prognosis. even diagnosed with metastasis in lymph nodes or other Long noncoding RNA (lncRNA) is a class of molecules organs2,3. Surgery resection and chemotherapy are the that have transcripts longer than 200 nt, lack an open- reading frame, and have limited protein-coding function6. In the human genome, as common epigenetic regulatory Correspondence: Jinfei Chen ([email protected])or molecules, lncRNAs play an important role in epigenetics Fen Yang ([email protected]) and are involved in transcriptional regulation, RNA 1Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People’s Republic of China shearing and modification, mRNA stabilization, transla- 2Department of Biochemistry and Molecular Biology, School of Basic Medical tional regulation, protein stabilization and transport, ’ Sciences, Nanjing Medical University, 211166 Nanjing, People s Republic of chromosome formation, and structural stability7,8. They China Full list of author information is available at the end of the article participate in regulating embryo development, tissue Edited by Ivano Amelio © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Zhao et al. Cell Death Discovery (2020) 6:99 Page 2 of 12 differentiation, organ formation, and the occurrence and GSE27342 from GEO datasets. Bioinformatics analysis development of some diseases9,10. The dysregulation of showed that there were 353, 37, and 69 upregulated lncRNAs can promote tumorigenesis and enhance the lncRNAs in the TCGA, GSE27342, and GSE58828 data- development of cancer by regulating proliferation, inva- sets, respectively (Fig. 1a). FEZF1-AS1 and LINC00355 sion, and metastasis11,12. were only two overlapping lncRNAs (Fig. 1b, left panel). A Many lncRNAs have been found to act as oncogenes previous study reported that FEZF1-AS1 promoted gastric and tumor suppressors, and many lncRNAs act by inter- cancer cell proliferation and that high expression of – acting with familiar oncogenes or tumor suppressors13 15. FEZF1-AS1 predicted poor prognosis in gastric cancer P53, encoded by the TP53 gene, is an important tumor patients24. We also found that 167 lncRNAs in GSE27342, suppressor that has the nickname of “gene guardian,” and 18 lncRNAs in GSE58828, and 310 lncRNAs in TCGA its transcriptional activity is crucial for cell-cycle pro- were downregulated, and that LINC00982 was the only – gression, apoptosis, and DNA repair16 18. Although TP53 overlapping lncRNA (Fig. 1b, right panel). It was reported is largely accepted as a tumor-suppressor gene, oncogenic that LINC00982 was expressed at low levels in gastric effects of mutant P53 proteins, such as deregulated cancer tissues, and that decreased LINC00982 expression metabolic pathways, increased tumor invasion, and was negatively correlated with patient prognosis25. enhanced chemotherapy resistance, have also been Therefore, we presumed that LINC00355, a novel reported, indicating a gain-of-function role for mutant lncRNA, might have an important role in the develop- P53, including in gastric cancer18,19. Post-translational ment and prognosis of gastric cancer. modification of P53, mainly including ubiquitination, phosphorylation, and acetylation, is one of the important LINC00355 is upregulated in gastric cancer and predicts mechanisms of regulating P53 activity20. The poor prognosis in patients ubiquitin–proteasome pathway plays a crucial role in To investigate the relevance between LINC00355 and regulating P53 protein levels21. It is well known that gastric cancer development, we examined LINC00355 MDM2, functioning as an E3 ubiquitin ligase, promotes expression in gastric cancer tissue by qRT-PCR from 72 the degradation of P53, and there are also a number of clinical gastric cancer patients and the corresponding other E3 ubiquitin ligases that bind to P53 to facilitate paracarcinoma tissue. The results showed that the proteasome-mediated ubiquitination of P5322,23. expression of LINC00355 in gastric cancer tissues was In this study, we screened lncRNA profiles using significantly higher than that in adjacent normal tissues microarray analysis and identified a novel lncRNA, (Fig. 2a), and its level was positively associated with depth LINC00355, in gastric cancer tissue from patients. It was of invasion and TNM stage (Fig. 2b, c). The survival highly expressed in gastric cancer tissues compared with analysis based on patients’ clinical data showed that high adjacent normal gastric mucosal epithelial tissues, and expression of LINC00355 significantly shortened the was associated with poor prognosis in patients. High survival time of patients (Fig. 2d), which suggested that expression of LINC00355 promoted gastric cancer cell high expression of LINC00355 predicted poor prognosis proliferation and tumorigenicity in immunodeficient of gastric cancer. mice. High-throughput RNA sequencing upon The correlational analysis between LINC00355 expres- LINC00355 knockdown revealed that the expression of sion and clinicopathological factors of gastric cancer RAD18 and UBE3C is positively correlated with patients determined that higher LINC00355 expression LINC00355 expression. We predicted substrates of the E3 levels were significantly correlated with advanced patho- ubiquitin ligases RAD18 and UBE3C using UbiBrowser logic stage (P = 0.000), invasion depth (P = 0.000), and (http://ubibrowser.ncpsb.org) and found that P53 was distant metastasis (P = 0.029) in gastric cancer patients, their only “highly probable” substrate. Our data showed but it was not correlated with other factors, including that LINC00355 enhanced the interaction between P53 histologic differentiation, lymphatic metastasis, sex, and and the E3 ubiquitin ligases RAD18 and UBE3C, thereby age (Table 1). facilitating ubiquitination and
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders
    Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Andrew H. Chiang All Rights Reserved Abstract Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in ASD genetics, the nature of phenotypic heterogeneity across probands is not well understood. Notably, likely gene- disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. We find that truncating mutations in a gene can result in a range of relatively mild decreases (15-30%) in gene expression due to nonsense-mediated decay (NMD), and show that more severe autism phenotypes are associated with greater decreases in expression. We also find that each gene with recurrent ASD mutations can be described by a parameter, phenotype dosage sensitivity (PDS), which characteriZes the relationship between changes in a gene’s dosage and changes in a given phenotype. Using simple linear models, we show that changes in gene dosage account for a substantial fraction of phenotypic variability in ASD. We further observe that LGD mutations affecting the same exon frequently lead to strikingly similar phenotypes in unrelated ASD probands. These patterns are observed for two independent proband cohorts and multiple important ASD-associated phenotypes. The observed phenotypic similarities are likely mediated by similar changes in gene dosage and similar perturbations to the relative expression of splicing isoforms.
    [Show full text]
  • UBE3B Is a Mitochondria-Associated E3 Ubiquitin Ligase Whose Activity Is Modulated by Its Interaction with Calmodulin to Respond to Oxidative Stress
    UBE3B is a mitochondria-associated E3 ubiquitin ligase whose activity is modulated by its interaction with Calmodulin to respond to oxidative stress by Andrea Catherine Braganza B.S. Biotechnology, Rochester Institute of Technology, 2008 Submitted to the Graduate Faculty of University of Pittsburgh School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE-MOLECULAR PHARMACOLOGY This dissertation was presented by Andrea Catherine Braganza It was defended on August 21st, 2015 and approved by Chairperson: Sruti Shiva, Ph.D., Associate Professor, Department of Pharmacology and Chemical Biology Bruce Freeman, Ph.D., Professor and Chair, Department of Pharmacology and Chemical Biology Jing Hu, M.D., Ph.D., Assistant Professor, Department of Pharmacology and Chemical Biology Jeffrey Brodsky, Ph.D., Professor, Department of Biological Sciences Sarah Berman, M.D., Ph.D., Assistant Professor, Department of Neurology Dissertation Advisor: Robert W. Sobol, Ph.D., Associate Professor, Department of Pharmacology and Chemical Biology ii Copyright © by Andrea Catherine Braganza 2015 iii UBE3B is a mitochondria-associated E3 ubiquitin ligase whose activity is modulated by its interaction with Calmodulin to respond to oxidative stress Andrea Catherine Braganza, Ph.D. University of Pittsburgh, 2015 Recent genome-wide studies found that patients with hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels suffer from Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome). The primary cause of Kaufman oculocerebrofacial syndrome (KOS) is autosomal recessive mutations in the gene UBE3B. However, to date, there are no studies that determine the cellular or enzymatic function of UBE3B.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
    Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Transcriptomic Landscaping of Core Genes and Pathways of Mild and Severe Psoriasis Vulgaris
    INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 219-231, 2021 Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris SAUMYA CHOUDHARY1,2, RISHIKA ANAND3, DIBYABHABA PRADHAN4, BANAJIT BASTIA2,5, SHASHI NANDAR KUMAR5,6, HARPREET SINGH4, POONAM PURI7, GEORGE THOMAS1 and ARUN KUMAR JAIN2,5 1Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007; 2Biomedical Informatics Centre, ICMR‑National Institute of Pathology, New Delhi 110029; 3Amity Institute of Biotechnology, Amity University, Noida Uttar Pradesh 201313; 4ICMR‑AIIMS Computational Genomics Centre (ISRM) Division, Indian Council of Medical Research; 5Environmental Toxicology Laboratory, ICMR‑National Institute of Pathology, New Delhi 110029; 6Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062; 7Department of Dermatology and STD, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi 110029, India Received May 20, 2019; Accepted July 31, 2020 DOI: 10.3892/ijmm.2020.4771 Abstract. Psoriasis is a common chronic inflammatory skin The dysregulated mild psoriasis genes were enriched in disease affecting >125 million individuals worldwide. The pathways involving cytokine‑cytokine receptor interac- therapeutic course for the disease is generally designed upon tion and rheumatoid arthritis, whereas cytokine‑cytokine the severity of the disease. In the present study, the gene receptor interaction, cell cycle and cell adhesion molecules expression profile GSE78097, was retrieved from the National were the most enriched pathways in severe psoriasis group. Centre of Biotechnology (NCBI)‑Gene Expression Omnibus PL1N1, TLR4, ADIPOQ, CXCL8, PDK4, CXCL1, CXCL5, (GEO) database to explore the differentially expressed LPL, AGT, LEP were hub genes in mild psoriasis, whereas genes (DEGs) in mild and severe psoriasis using the Affy BUB1, CCNB1, CCNA2, CDK1, CDH1, VEGFA, PLK1, package in R software.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • A 1.35 Mb DNA Fragment Is Inserted Into the DHMN1 Locus on Chromosome 7Q34–Q36.2
    Hum Genet (2016) 135:1269–1278 DOI 10.1007/s00439-016-1720-4 ORIGINAL INVESTIGATION A 1.35 Mb DNA fragment is inserted into the DHMN1 locus on chromosome 7q34–q36.2 Alexander P. Drew1 · Anthony N. Cutrupi1,3 · Megan H. Brewer1,3 · Garth A. Nicholson1,2,3 · Marina L. Kennerson1,2,3 Received: 5 April 2016 / Accepted: 25 July 2016 / Published online: 3 August 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Distal hereditary motor neuropathies predomi- for hereditary motor neuropathies and highlights the grow- nantly affect the motor neurons of the peripheral nervous ing importance of interrogating the non-coding genome for system leading to chronic disability. Using whole genome SV mutations in families which have been excluded for sequencing (WGS) we have identified a novel structural genome wide coding mutations. variation (SV) within the distal hereditary motor neuropa- thy locus on chromosome 7q34–q36.2 (DHMN1). The SV involves the insertion of a 1.35 Mb DNA fragment Introduction into the DHMN1 disease locus. The source of the inserted sequence is 2.3 Mb distal to the disease locus at chromo- The distal hereditary motor neuropathies (dHMN) are a some 7q36.3. The insertion involves the duplication of five group of progressive neurodegenerative disorders that pri- genes (LOC389602, RNF32, LMBR1, NOM1, MNX1) and marily affect the motor neurons of distal limbs without partial duplication of UBE3C. The genomic structure of affecting sensory neurons. The disorder is a length depend- genes within the DHMN1 locus are not disrupted by the ant neuropathy in which the longest nerves are initially insertion and no disease causing point mutations within affected.
    [Show full text]
  • Murine Perinatal Beta Cell Proliferation and the Differentiation of Human Stem Cell Derived Insulin Expressing Cells Require NEUROD1
    Page 1 of 105 Diabetes Murine perinatal beta cell proliferation and the differentiation of human stem cell derived insulin expressing cells require NEUROD1 Anthony I. Romer,1,2 Ruth A. Singer1,3, Lina Sui2, Dieter Egli,2* and Lori Sussel1,4* 1Department of Genetics and Development, Columbia University, New York, NY 10032, USA 2Department of Pediatrics, Columbia University, New York, NY 10032, USA 3Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA 4Department of Pediatrics, University of Colorado Denver School of Medicine, Denver, CO 80045, USA *Co-Corresponding Authors Dieter Egli 1150 St. Nicholas Avenue New York, NY 10032 [email protected] Lori Sussel 1775 Aurora Ct. Aurora, CO 80045 [email protected] Word Count: Abstract= 149; Body= 4773 Total Paper Figures= 7, Total Supplemental Tables= 4, Total Supplemental Figures= 5 Diabetes Publish Ahead of Print, published online September 13, 2019 Diabetes Page 2 of 105 Abstract Inactivation of the β cell transcription factor NEUROD1 causes diabetes in mice and humans. In this study, we uncovered novel functions of Neurod1 during murine islet cell development and during the differentiation of human embryonic stem cells (HESCs) into insulin-producing cells. In mice, we determined that Neurod1 is required for perinatal proliferation of alpha and beta cells. Surprisingly, apoptosis only makes a minor contribution to beta cell loss when Neurod1 is deleted. Inactivation of NEUROD1 in HESCs severely impaired their differentiation from pancreatic progenitors into insulin expressing (HESC-beta) cells; however survival or proliferation was not affected at the time points analyzed. NEUROD1 was also required in HESC-beta cells for the full activation of an essential beta cell transcription factor network.
    [Show full text]
  • Molecular Sciences High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorder
    Int. J. Mol. Sci. 2015, 16, 6464-6495; doi:10.3390/ijms16036464 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders Merlin G. Butler *, Syed K. Rafi † and Ann M. Manzardo † Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; E-Mails: [email protected] (S.K.R.); [email protected] (A.M.M.) † These authors contributed to this work equally. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-913-588-1873; Fax: +1-913-588-1305. Academic Editor: William Chi-shing Cho Received: 23 January 2015 / Accepted: 16 March 2015 / Published: 20 March 2015 Abstract: Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes.
    [Show full text]
  • Promoterless Transposon Mutagenesis Drives Solid Cancers Via Tumor Suppressor Inactivation
    cancers Article Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation Aziz Aiderus 1,† , Ana M. Contreras-Sandoval 1,† , Amanda L. Meshey 1,†, Justin Y. Newberg 1,2,‡, Jerrold M. Ward 3,§, Deborah A. Swing 4, Neal G. Copeland 2,3,4,k, Nancy A. Jenkins 2,3,4,k, Karen M. Mann 1,2,3,4,5,6,7,* and Michael B. Mann 1,2,3,4,6,7,8,9,* 1 Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Aziz.Aiderus@moffitt.org (A.A.); Ana.ContrerasSandoval@moffitt.org (A.M.C.-S.); Amanda.Meshey@moffitt.org (A.L.M.); [email protected] (J.Y.N.) 2 Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; [email protected] (N.G.C.); [email protected] (N.A.J.) 3 Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; [email protected] 4 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] 5 Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA 6 Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA 7 Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA 8 Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA 9 Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA * Correspondence: Karen.Mann@moffitt.org (K.M.M.); Michael.Mann@moffitt.org (M.B.M.) † These authors contributed equally.
    [Show full text]