New Dextral Flounder Samariscus Hexaradiatus Sp. Nov. (Samaridae, Pleuronectiformes) from the Solomon Islands, South-West Paci

Total Page:16

File Type:pdf, Size:1020Kb

New Dextral Flounder Samariscus Hexaradiatus Sp. Nov. (Samaridae, Pleuronectiformes) from the Solomon Islands, South-West Paci New dextral flounderSamariscus hexaradiatus sp. nov. (Samaridae, Pleuronectiformes) from the Solomon Islands, South-West Pacific Ocean by Juan M. DIAZ DE ASTARLOA* (1), Romain CAUSSE (2) & Patrice PRUVOST (2) Abstract. – A new right eyed flounder,Samariscus hexaradiatus, is described on the basis of two specimens collected from the Solomon Islands, southwestern Pacific Ocean, at depths of 135-325 m. The new species is dis- tinguished from other species of the genus by the following characters: 6 pectoral-fin rays; 82 dorsal-fin rays and 60-62 anal-fin rays; 9 abdominal vertebrae and 32 caudal vertebrae; presence of ctenoid scales on the interorbital space and high number (74-75) of lateral-line scales. Ocular side of body light brown with four and three distin- guishable horseshoe-shaped spots along margins of both dorsal and ventral profiles, respectively. Two indistinct dusky blotches on the lateral line, one situated before the distal end part of the pectoral fin when flattened pos- teriorly, the other placed near the last one-third of the body length. Two distinct black spots placed on the upper and lower margins of the caudal peduncle at the posterior end of the dorsal and anal fins, respectively. Pectoral fin with dark pigmentation. Dorsal and anal fins dusky brown near the proximal and distal ends of the fin-rays, © SFI respectively, and with distinct series of small dusky spots on the medial parts the fin-rays. Received: 16 Oct. 2012 Accepted: 16 Sep. 2013 Editor: G. Duhamel Résumé. – Nouvelle espèce de poisson plat dextre, Samariscus hexaradiatus sp. nov. (Samaridae, Pleuronecti- formes), des îles Salomon, au sud-ouest de l’océan Pacifique. Une nouvelle espèce de poisson plat dextre, Samariscus hexaradiatus, est décrite sur la base de deux spé- Key words cimens collectés aux îles Salomon, au sud-ouest de l’océan Pacifique, à des profondeurs allant de 135 à 325 m. Elle se distingue des autres espèces du même genre par les caractères suivants : 6 rayons à la nageoire pectorale; Pleuronectiformes 82 rayons à la nageoire dorsale, 60-62 rayons à la nageoire anale; 9 et 32 vertèbres abdominales et caudales, Samaridae respectivement; présence d’écailles cténoïdes dans l’espace interorbitaire et 74-75 écailles sur la ligne latérale. Samariscus La face oculée du corps est brun clair avec quatre et trois taches distinctes en forme de fer à cheval le long des hexaradiatus sp. nov. nageoires dorsale et ventrale, respectivement. Deux taches sombres indistinctes sont situées le long de la ligne Solomon Islands latérale, l’une située en avant de l’extrémité de la nageoire pectorale lorsque celle-ci est rabattue postérieure- New species ment sur le corps, l’autre placée vers l’arrière, à mi-longueur du corps. Deux autres taches noires distinctes sont localisées sur les extrémités dorsales et ventrales du pédoncule caudal, juste après les nageoires dorsale et anale, respectivement. Les nageoires pectorales ont une pigmentation très foncée. Les rayons des nageoires dorsale et anale sont brun sombre sur les parties distales et proximales, et montrent des séries distinctes de petites taches sombres sur les parties médianes des rayons. The dextral flatfish genus Samariscus Gilbert, 1905 S. leopardus Voronina, 2009, S. longimanus Norman, 1927, (Pleuronectiformes; Samaridae sensu Cooper and Chapleau, S. luzonesis Fowler, 1934, S. macrognathus Fowler, 1934, 1998) is characterized by the combination of the following S. maculatus (Günther, 1880), S. multiradiatus Kawai et al., characters: four or five ocular-side pectoral rays, blind-side 2008, S. neocaledonia Kawai et al., 2011, S. nielseni Quéro pectoral fin absent, branched middle caudal-fin rays, lateral et al., 1989, S. sunieri Weber & de Beaufort, 1929, S. triocel- line on blind side absent (Norman, 1931, 1934; Quéro et latus Woods, 1966 and S. xenicus Ochiai & Amaoka, 1962). al., 1989; Alfonso, 2001; Amaoka et al., 1997; Kawai et al., In 2001, two specimens of an undescribed species of the 2008, 2011). Nineteen nominal species distributed in tropi- genus Samariscus were collected during the cruise “Salo- cal and subtropical regions of the Indo-Pacific (Kawaiet al., mon 1” from 23 September to 7 October 2001 in the Salo- 2008) are currently included in the genus (S. asanoi Ochiai mon archipelago (Principal Investigator Bertrand Richer de & Amaoka, 1962, S. corallinus Gilbert, 1905, S. desoutter- Forges). The cruise took place on board R/V Alis deployed ae Quéro et al., 1989, S. filipectoralis Shen, 1982, S. huys- from Nouméa by the Institut de Recherche pour le Dévelop- mani Weber, 1913, S. inornatus (Lloyd, 1909), S. japonicus pement (IRD). In this study, we describe this new species as Kamohara, 1936, S. latus Matsubara & Takamuki, 1951, Samariscus hexaradiatus. (1) Laboratorio de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL, Mar del Plata, Argentina. (2) UMR BOREA 7208, Département milieux et peuplements aquatiques, Muséum national d’Histoire naturelle. CP26, 43 rue Cuvier, 75005 Paris, France. [[email protected]] [[email protected]] * Corresponding author [[email protected]] Cybium 2013, 37(4): 241-246. Samariscus hexaradiatus sp. nov. from Salomon Islands DIAZ D E ASTARLOA ET AL . Figure 1. - Samariscus hexaradiatus n. sp. Ocular and blind sides. A, B: Holotype, MNHN 2002-3655, 100.3 mm SL. C, D: Paratype, MNHN 2002-3761, 80.9 mm SL. Table I. - Comparison of morphometric and meristic characters for ten species of Samariscus from the Indo-Pacific and Pacific Ocean. Ratios expressed as proportion of standard length (SL) or head length (HL). BD, body depth; PecL, pectoral fin length; PelLO, pelvic fin length ocular side; PectLB, pectoral fin length blind side; CPD, caudal peduncle depth; SNL, snout length; UED, upper eye diameter; LED, lower eye diameter; IW, interorbital width; UJO, length of upper jaw ocular side; UJB, length of upper jaw blind side; LJO, length of lower jaw ocular side; LJB, length of lower jaw blind side; DO, dorsal-fin rays; AN, anal-fin rays; PE, pectoral-fin rays; LL, lateral line scales; GRO, gill-rakers on ocular side; GRB, gill-rakers on blind side; VEA, abdominal vertebrae; VEC, caudal vertebrae. S. multiradiatus S. S. huysmani S. latus S. macrognathus S. hexaradiatus filipectoralis n = 15 n = 46 n = 2 Paratypes Other specimens Holotype n = 5 n = 5 Holotype Paratype Paratype Range x Range x Range x Range x Range x Measurements SL (mm) 100.3 80.9 76.5 55.6-114.5 50.0-98.9 60.3-85.8 59.5 41.9-61.5 37.7-48.8 HL (mm) 21.6 17.7 17.0 13.3-24.3 12.9-24.9 14.3-19.7 14.0 11.3-14.0 9.4-11.2 In SL BD 3.2 2.9 2.2 (2.6-3.2) 2.9 (2.5-3.2) 2.8 (2.4-2.6) 2.5 2.8 (2.6-3.2) 2.9 (2.6-2.9) 2.7 HL 4.6 4.6 4.5 (3.6-4.8) 4.3 (3.6-4.6) 4.2 (4.2-4.4) 4.3 4.2 (4.0-4.6) 4.3 (4.0-4.5) 4.2 PecL 3.7 3.6 2.6 (3.0-4.9) 4.1 (1.6-3.9) 2.5 (2.3-3.2) 2.8 6.3 (3.2-5.7) 4.6 (3.4-4.6) 3.9 PelLO 5.1 6.3 8.4 (5.6-10.8) 8.9 (6.5-15.4) 9.4 (7.9-8.7) 8.3 6.9 (6.7-11.2) 9.5 (9.8-12.2) 10.8 PelLB 10.4 11.1 15.3 (11.0-18.7) 14.1 (10.9-21.5) 14.1 (12.1-13.0) 12.5 10.6 (9.5-27.6) 18.1 (11.3-18.8) 15.5 CPD 7.5 8.7 6.3 (7.4-8.8) 7.9 (6.6-8.9) 7.8 (6.7-7.6) 7.2 9.0 (8.6-9.8) 9.2 (8.8-9.4) 9.1 In HL SNL 5.4 5.2 5.9 (3.9-5.1) 4.5 (4.0-5.4) 4.7 (3.9-4.0) 3.9 4.4 (4.2-5.2) 4.6 (4.2-5.5) 4.9 UED 3.0 3.1 2.9 (2.7-3.3) 3.0 (2.6-3.6) 3.0 (3.4-3.4) 3.4 2.8 (2.4-3.0) 2.7 (2.4-3.0) 2.7 LED 2.9 3.0 3.4 (2.8-3.5) 3.1 (2.8-4.0) 3.2 (3.3-3.6) 3.4 2.6 (2.5-2.9) 2.6 (2.6-3.0) 2.8 IW 30.9 29.5 21.3 (17.3-42) 24.3 (14.6-46.4) 23.5 (17.9-17.9) 17.9 28.0 (26.4-38.3) 34.4 (20.2-28.0) 24.0 UJO 3.3 3.9 2.9 (2.6-3.4) 2.9 (2.8-3.9) 3.1 (2.1-2.2) 2.1 3.7 (3.4-3.8) 3.6 (3.2-3.5) 3.3 UJB 3.6 4.0 3.4 (2.9-3.8) 3.3 (3.0-4.0) 3.4 (2.3-2.5) 2.4 3.7 (3.8-4.1) 3.9 (3.6-4.5) 3.8 LJO 2.1 2.1 2.0 (1.8-2.2) 2.0 (1.9-2.2) 2.0 (1.6-1.6) 1.6 2.2 (2.1) 2.1 (2.1-2.2) 2.1 LJB 2.2 2.4 2.2 (2.0-2.5) 2.2 (2.1-2.4) 2.2 (1.77) 1.77 2.1 (2.2-2.3) 2.2 (2.1-2.3) 2.2 Counts DO 82 82 71 (75-80) 77.4 (66-74) 70.4 (71-73) 72.0 85 (86-88) 87.2 (85-89) 87.4 AN 60 62 53 (59-60) 59.5 (49-57) 54.4 (56-58) 57.0 70 (69-72) 70.4 (69-71) 69.8 PE 6 6 5 5 5 4 5 5 5 LL 74 75 66 (70-88) 75.7 (54-68) 61.9 78 78.0 66 (64-67) 66.0 (63-69) 65.7 GRO 0+5 0+6 0+8 (0+7-9) 7.6 (0+5-8) 6.9 (0+5-6) 5.5 0 GRB 0+3 0+5 0-7 (0+7-11) 8.8 (0+6-9) 7.2 (0+5-6) 5.5 0 VEA 9 9 9 10 10 9 9 9 9 VEC 32 32 29 29-31 29-30 29 34 (34-35) 34.4 (34-35) 34.2 242 Cybium 2013, 37(4) DIAZ D E ASTARLOA ET AL .
Recommended publications
  • 1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020.
    [Show full text]
  • Annadel Cabanban Emily Capuli Rainer Froese Daniel Pauly
    Biodiversity of Southeast Asian Seas , Palomares and Pauly 15 AN ANNOTATED CHECKLIST OF PHILIPPINE FLATFISHES : ECOLOGICAL IMPLICATIONS 1 Annadel Cabanban IUCN Commission on Ecosystem Management, Southeast Asia Dumaguete, Philippines; Email: [email protected] Emily Capuli SeaLifeBase Project, Aquatic Biodiversity Informatics Office Khush Hall, IRRI, Los Baños, Laguna, Philippines; Email: [email protected] Rainer Froese IFM-GEOMAR, University of Kiel Duesternbrooker Weg 20, 24105 Kiel, Germany; Email: [email protected] Daniel Pauly The Sea Around Us Project , Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Email: [email protected] ABSTRACT An annotated list of the flatfishes of the Philippines was assembled, covering 108 species (vs. 74 in the entire North Atlantic), and thus highlighting this country's feature of being at the center of the world's marine biodiversity. More than 80 recent references relating to Philippine flatfish are assembled. Various biological inferences are drawn from the small sizes typical of Philippine (and tropical) flatfish, and pertinent to the "systems dynamics of flatfish". This was facilitated by FishBase, which documents all data presented here, and which was used to generate the graphs supporting these biological inferences. INTRODUCTION Taxonomy, in its widest sense, is at the root of every scientific discipline, which must first define the objects it studies. Then, the attributes of these objects can be used for various classificatory and/or interpretive schemes; for example, the table of elements in chemistry or evolutionary trees in biology. Fisheries science is no different; here the object of study is a fishery, the interaction between species and certain gears, deployed at certain times in certain places.
    [Show full text]
  • An Annotated Checklist of Philippine Flatfish: Ecological Implications3'
    An Annotated Checklist of Philippine Flatfish: Ecological Implications3' A. Cabanbanb) E. Capulic) R. Froesec) and D. Pauly1" Abstract An annotated list of the flatfish of the Philippines was assembled, covering 108 species (vs. 74 in the entire North Atlantic), and thus highlighting this country's feature of being at the center of the world's marine biodiversity. More than 80 recent references relating to Philippine flatfish are assembled. Various biological inferences are drawn from the small sizes typical of Philippine (and tropical) flatfish, and pertinent to the "systems dynamics of flatfish". This was facilitated by the FishBase CD-ROM, which documents all data presented here, and which was used to generate the graphs supporting these biological inferences. a) For presentation at the Third International Symposium on Flatfish Ecology, 2-8 November 1996, Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands. ICLARM Contribution No. 1321. b> Borneo Marine Research Unit, Universiti Malaysia Sabah, 9th Floor Gaya Centre, Jalan Tun Fuad Stephens, Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia. c) International Center for Living Aquatic Resources Management (ICLARM), MCPO Box 2631, 0718 Makati City, Philippines. d) Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, B.C. Canada V6T 1Z4. E- mail: [email protected]. Introduction Taxonomy, in its widest sense, is at the root of every scientific discipline, which must first define the objects it studies. Then, the attributes of these objects can be used for various classificatory and/or interpretive schemes; for example, the table of elements in chemistry or evolutionary trees in biology. Fisheries science is no different; here the object of study is a fishery, the interaction between species and certain gears, deployed at certain times in certain places.
    [Show full text]
  • Quantitative Species-Level Ecology of Reef Fish Larvae Via Metabarcoding
    ARTICLES https://doi.org/10.1038/s41559-017-0413-2 Quantitative species-level ecology of reef fish larvae via metabarcoding Naama Kimmerling1,2, Omer Zuqert3, Gil Amitai3, Tamara Gurevich2, Rachel Armoza-Zvuloni2,8, Irina Kolesnikov2, Igal Berenshtein1,2, Sarah Melamed3, Shlomit Gilad4, Sima Benjamin4, Asaph Rivlin2, Moti Ohavia2, Claire B. Paris 5, Roi Holzman 2,6*, Moshe Kiflawi 2,7* and Rotem Sorek 3* The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distribu- tions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggest- ing a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allow- ing Lessepsian migration into the Mediterranean Sea.
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • Fishes Collected During the 2017 Marinegeo Assessment of Kāne
    Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.
    [Show full text]
  • Peces Óseos Marinos (Pisces: Osteichthyes)
    Bibliografía sobre Biodiversidad Acuática de Chile (Pisces: Os P eces ÓseosMarinos t eich th y es) Bibliografía sobre Biodiversidad Acuática de Chile Palma, S., P. Báez & G. Pequeño (eds.). 2010 Comité Oceanográfico Nacional, Valparaíso, pp. 315-395 Peces Óseos Marinos (Pisces: Osteichthyes) Germán Pequeño1, Sylvia Sáez1 & Gloria Pizarro2 1Instituto de Zoología “Ernst F. Kilian”, Universidad Austral de Chile. Casilla 567, Valdivia, E-mail: [email protected] 2Librería Punto 4, Valdivia. RESUMEN Se presentan 1.772 referencias sobre taxonomía, sistemática y distribución geográfica de los peces óseos marinos y que siendo marinos penetran en estuarios de Chile. Se consideran peces de la costa de Chile en el continente sudamericano y también de las islas oceánicas chilenas. Palabras clave: peces, bibliografía, biodiversidad, Pacífico suroriental, Chile. ABSTRACT One thousand seven hundred and seventy-two references on taxonomy, systematics and geographical distribution of marine bony fishes and those that being marine enter in estuaries of Chile are presented. The species considered are those from the Chilean continental coast and those from the Chilean oceanic islands. Key words: fishes, bibliography, biodiversity, southeastern, Chile. INTRODUCCIÓN marinos, incursionan en estuarios, consi-derando la costa de Chile que integra el continente sudamericano Actualmente, se podría decir que las especies y aquella de las islas oceánicas. Puede observarse conocidas de peces óseos de aguas marinas chilenas que se trata de un listado bastante restringido, pero alcanzan un número cercano a las 1.050. Se supone que servirá al lector, en los aspectos científicos que dada la falta de exploración, especialmente en el básicos señalados. dominio marino, ese número debería aumentar.
    [Show full text]
  • Pleuronectidae 3863
    click for previous page Pleuronectiformes: Pleuronectidae 3863 PLEURONECTIDAE Righteye flounders by D.A. Hensley iagnostic characters: Body oval-shaped or elongate, strongly compressed (size to about 22 cm). DMargin of preopercle distinct, not covered by skin and scales. Eyes on right side of head; reversals rare. Mouth and teeth small. Gill rakers elongate, not tooth-like. Dorsal-fin origin anterior to posterior margin of upper eye; no fin spines; urinary papilla on eyed side; caudal fin not attached to dorsal and anal fins; pectoral fin on blind side smaller than fin on eyed side or missing; pelvic-fin bases short or somewhat elongate, fin on eyed side slightly anterior to that of blind side and closer to or on midventral line. Scales small; lateral line weakly developed or missing on blind side of body. Colour: body on eyed side variable in colour pattern, often with spots or blotches on body and fins; blind side whitish. elongate anterior dorsal-fin rays (in the commercially used Samaris cristatus and another species of the genus, but absent in all other species in the area) dorsal and anal fins not joined to caudal fin origin of dorsal fin eyes on right side of head Samaris cristatus margin of preopercle distinct Habitat, biology, and fisheries: Most Indo-Pacific species are found at depths of about 60 to 500 m on soft bottoms composed of mixtures of mud, sand, silt, and crushed shells. Some shallow-water species occur as shallow as 6 m in or on sands around coral reefs. One species (Samaris cristatus) occurs in fairly shallow water and is marketed.
    [Show full text]
  • Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Check List of Fishes of the Gulf of Mannar Ecosystem, Tamil Nadu, India
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2016.58.1.1895-05 Check list of fishes of the Gulf of Mannar ecosystem, Tamil Nadu, India K. K. Joshi*, Miriam Paul Sreeram, P. U. Zacharia, E. M. Abdussamad, Molly Varghese, O. M. M. J. Mohammed Habeeb1, K. Jayabalan1, K. P. Kanthan1, K. Kannan1, K. M. Sreekumar, Gimy George and M. S. Varsha ICAR-Central Marine Fisheries Research Institute, P. B. No.1603, Kochi - 682 018, Kerala, India. 1Tuticorin Research Centre of Central Marine Fisheries Research Institute, Tuticorin - 628 001, Tamil Nadu, India. *Correspondence e-mail: [email protected] Received: 10 Jan 2016, Accepted: 25 Jun 2016, Published: 30 Jun 2016 Original Article Abstract Introduction Gulf of Mannar Ecosystem (GOME) covers an area spread over Rameswaram and Kanyakumari for about 19000 km2 and lies between India is blessed with a vast region of coral reefs and 78°11’E and 79°15’ E longitude and 8°49’N and 9°15’N latitude. The mangroves and these regions support very rich fauna of flora 21 coral islands form a network of habitats for different kinds of fishes and constitute rich biodiversity of marine organisms. Gulf and marine organisms. Fish samples were collected during April 2005 of Mannar Ecosystem (GOME) covers an area spread over to March 2010 from different centers viz., Vembar, Tharuvaikulam, Rameswaram and Kanyakumari to about 19,000 km2. GOME Vellapatti, Therespuram, Tuticorin, Alangarathattu, Pazhaykayal, lies between 78°11’00” E and 79°15’00” E longitude and Punnakayal, Kayalpattinam, Veerapandiapattinam, Thiruchendur and 8°49’00” N and 9°15’00” N latitude.
    [Show full text]
  • Marine and Estuarine Fish Fauna of Tamil Nadu, India
    Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery.
    [Show full text]
  • Redescriptions of the Three Pleuronectiform Fishes (Samaridae and Soleidae) from Korea
    Korean J. Ichthyol. 19(1), 73~80, 2007 Redescriptions of the Three Pleuronectiform Fishes (Samaridae and Soleidae) from Korea Jeong-Ho Park, Jin Koo Kim*, Jung Hwa Choi and Dae Soo Chang Fisheries Resources Research Team, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-gun, Busan 619-902, Korea Three pleuronectiform fishes are redescribed based on specimens from southern sea of Korea. A single specimen (73.4 mm SL) of Samariscus japonicus of the family Samaridae is characterized by having no pectoral fin on blind side and 5 pectoral fin rays on ocular side of body. Twenty specimens (53.6~125.8 mm SL) of Plagiopsetta glossa of the same family are characterized by having 8~10 pectoral fin rays and 6 black ring-shaped blotches on ocular side of body. Three specimens (74.1~83.4 mm SL) of Aseraggodes kaianus of the family Soleidae are characterized by having blackish-brown reticulations on ocular side of body. Key words : Redescription, Pleuronectiformes, Samariscus japonicus, Plagiopsetta glossa, Aseraggodes kaianus Since Kim and Youn (1994) carried out the tax- form fishes on the basis of the Korean specimens onomic revision of the suborder Pleuronectoidei in detail and compare them with those of pre- from Korea firstly, Kim et al. (2005) have reco- vious studies for the first time. gnized six families and 52 species in the order Counts and measurements were followed those Pleuronectiformes from Korea. of Hubbs and Lagler (1964) and Nakabo (2002a). Concerning fishes of the East China Sea and Number of vertebrae and median fin rays were the Yellow Sea, Yamada et al.
    [Show full text]