A Survey of CORDIC Algorithms for Fpgas

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of CORDIC Algorithms for Fpgas A survey of CORDIC algorithms for FPGA based computers Ray Andraka Andraka Consulting Group, Inc 16 Arcadia Drive North Kingstown, RI 02852 401/884-7930 FAX 401/884-7950 email:[email protected] 1. ABSTRACT transcendental functions that use only shifts and adds to perform. The trigonometric functions are based on vector The current trend back toward hardware rotations, while other functions such as square root are intensive signal processing has uncovered a implemented using an incremental expression of the desired relative lack of understanding of hardware function. The trigonometric algorithm is called CORDIC, signal processing architectures. Many an acronym for COordinate Rotation DIgital Computer. The incremental functions are performed with a very simple hardware efficient algorithms exist, but these extension to the hardware architecture, and while not are generally not well known due to the CORDIC in the strict sense, are often included because of dominance of software systems over the past the close similarity. The CORDIC algorithms generally quarter century. Among these algorithms is a produce one additional bit of accuracy for each iteration. set of shift-add algorithms collectively known The trigonometric CORDIC algorithms were originally as CORDIC for computing a wide range of developed as a digital solution for real-time navigation functions including certain trigonometric, problems. The original work is credited to Jack Volder hyperbolic, linear and logarithmic functions. [4,9]. Extensions to the CORDIC theory based on work by John Walther[1] and others provide solutions to a broader While there are numerous articles covering class of functions. The CORDIC algorithm has found its various aspects of CORDIC algorithms, very way into diverse applications including the 8087 math few survey more than one or two, and even coprocessor[7], the HP-35 calculator, radar signal fewer concentrate on implementation in processors[3] and robotics. CORDIC rotation has also been FPGAs. This paper attempts to survey proposed for computing Discrete Fourier[4], Discrete Cosine[4], Discrete Hartley[10] and Chirp-Z [9] transforms, commonly used functions that may be filtering[4], Singular Value Decomposition[14], and solving accomplished using a CORDIC architecture, linear systems[1]. explain how the algorithms work, and explore This paper attempts to survey the existing CORDIC and implementation specific to FPGAs. CORDIC-like algorithms with an eye toward 1.1 Keywords implementation in Field Programmable Gate Arrays CORDIC, sine, cosine, vector magnitude, polar conversion (FPGAs). First a brief description of the theory behind the algorithm and the derivation of several functions is 2. INTRODUCTION presented. Then the theory is extended to the so-called The digital signal processing landscape has long been unified CORDIC algorithms, after which implementation of dominated by microprocessors with enhancements such as FPGA CORDIC processors is discussed. single cycle multiply-accumulate instructions and special Permission to make digital or hard copies of part or all of this work for addressing modes. While these processors are low cost personal or classroom use is granted without fee provided that copies are and offer extreme flexiblility, they are often not fast enough not made or distributed for profit or commercial advantage and that for truly demanding DSP tasks. The advent of copies bear this notice and the full citation on the first page. Copyrights reconfigurable logic computers permits the higher speeds of for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to dedicated hardware solutions at costs that are competitive republish, to post on servers, or to redistribute to lists, requires prior with the traditional software approach. Unfortunately, specific permission and/or a fee. Request permissions from Publications algorithms optimized for these microprocessor based Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. systems do not usually map well into hardware. While FPGA 98 Monterey CA USA hardware-efficient solutions often exist, the dominance of Copyright 1998 ACM 0-89791-978-5/98/01..$5.00 the software systems has kept those solutions out of the spotlight. Among these hardware-efficient algorithms is a class of iterative solutions for trigonometric and other 3. CORDIC THEORY: AN ALGORITHM system based on binary arctangents. Conversions between this angular system and any other can be accomplished FOR VECTOR ROTATION using a look-up. A better conversion method uses an All of the trigonometric functions can be computed or additional adder-subtractor that accumulates the elementary derived from functions using vector rotations, as will be rotation angles at each iteration. The elementary angles can discussed in the following sections. Vector rotation can be expressed in any convenient angular unit. Those angular also be used for polar to rectangular and rectangular to values are supplied by a small lookup table (one entry per polar conversions, for vector magnitude, and as a building iteration) or are hardwired, depending on the block in certain transforms such as the DFT and DCT. The implementation. The angle accumulator adds a third CORDIC algorithm provides an iterative method of difference equation to the CORDIC algorithm: performing vector rotations by arbitrary angles using only shifts and adds. The algorithm, credited to Volder[4], is =−⋅ −−1 i zzdiii+1 tan ()2 derived from the general (Givens) rotation transform: xx'cossin=−φφ y Obviously, in cases where the angle is useful in the arctangent base, this extra element is not needed. yy'=+ cosφφ x sin The CORDIC rotator is normally operated in one of two which rotates a vector in a Cartesian plane by the angle φ. modes. The first, called rotation by Volder[4], rotates the These can be rearranged so that: input vector by a specified angle (given as an argument). The second mode, called vectoring, rotates the input vector xxy'cos=⋅−φφ[] tan to the x axis while recording the angle required to make that rotation. yyx'cos=⋅+φφ[] tan In rotation mode, the angle accumulator is initialized with So far, nothing is simplified. However, if the rotation the desired rotation angle. The rotation decision at each angles are restricted so that tan(φ)=±2-i, the multiplication iteration is made to diminish the magnitude of the residual by the tangent term is reduced to simple shift operation. angle in the angle accumulator. The decision at each Arbitrary angles of rotation are obtainable by performing a iteration is therefore based on the sign of the residual angle series of successively smaller elementary rotations. If the after each step. Naturally, if the input angle is already decision at each iteration, i, is which direction to rotate expressed in the binary arctangent base, the angle rather than whether or not to rotate, then the cos(δi) term accumulator may be eliminated. For rotation mode, the becomes a constant (because cos(δi) = cos(-δi)). The CORDIC equations are: iterative rotation can now be expressed as: =−⋅⋅−i xxydiiii+1 2 =−⋅⋅[]−i =+⋅⋅−i xKxydiiiii+1 2 yyxdiiii+1 2 =+⋅⋅−i =−⋅ −−1 i yKyxdiiiii+1 []2 zzdiii+1 tan ()2 where: where −−12ii − ==+() di= -1 if zi < 0, +1 otherwise Ki cos tan 2112 =± which provides the following result: di 1 =−[] Removing the scale constant from the iterative equations xAxzyznn0000cos sin yields a shift-add algorithm for vector rotation. The yAyzxz=+[]cos sin product of the Ki’s can be applied elsewhere in the system nn0000 or treated as part of a system processing gain. That product z = 0 approaches 0.6073 as the number of iterations goes to n infinity. Therefore, the rotation algorithm has a gain, A , =+−2i n An ∏ 12 of approximately 1.647. The exact gain depends on the n number of iterations, and obeys the relation In the vectoring mode, the CORDIC rotator rotates the =+−2i input vector through whatever angle is necessary to align An ∏ 12 n the result vector with the x axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of The angle of a composite rotation is uniquely defined by the the original vector (the x component of the result). The sequence of the directions of the elementary rotations. That vectoring function works by seeking to minimize the y sequence can be represented by a decision vector. The set component of the residual vector at each rotation. The sign of all possible decision vectors is an angular measurement of the residual y component is used to determine which The CORDIC rotator described is usable to compute direction to rotate next. If the angle accumulator is several trigonometric functions directly and others initialized with zero, it will contain the traversed angle at indirectly. Judicious choice of initial values and modes the end of the iterations. In vectoring mode, the CORDIC permits direct computation of sine, cosine, arctangent, equations are: vector magnitude and transformations between polar and =−⋅⋅−i Cartesian coordinates. xxydiiii+1 2 =+⋅⋅−i 3.1 Sine and Cosine yyxdiiii+1 2 The rotational mode CORDIC operation can simultaneously zzd=−⋅tan −−1()2 i compute the sine and cosine of the input angle. Setting the iii+1 y component of the input vector to zero reduces the rotation where mode result to: =⋅ di= +1 if yi < 0, -1 otherwise. xAxznn00cos =⋅ Then: yAxznn00sin =+2 2 By setting x equal to 1/ A, the rotation produces the xAxynn0 0 0 n = unscaled sine and cosine of the angle argument, z0. Very yn 0 often, the sine and cosine values modulate a magnitude value. Using other techniques (e.g., a look up table) =+ −1 y0 zzn 0 tan requires a pair of multipliers to obtain the modulation. The x0 CORDIC technique performs the multiply as part of the =+−2i rotation operation, and therefore eliminates the need for a An ∏ 12 n pair of explicit multipliers.
Recommended publications
  • Subchapter 2.4–Hp Server Rp5400 Series
    Chapter 2 hp server rp5400 series Subchapter 2.4—hp server rp5400 series hp server rp5470 Table 2.4.1 HP Server rp5470 Specifications Server model number rp5470 Max. Network Interface Cards (cont.)–see supported I/O table Server product number A6144B ATM 155 Mb/s–MMF 10 Number of Processors 1-4 ATM 155 Mb/s–UTP5 10 Supported Processors ATM 622 Mb/s–MMF 10 PA-RISC PA-8700 Processor @ 650 and 750 MHz 802.5 Token Ring 4/16/100 Mb/s 10 Cache–Instr/data per CPU (KB) 750/1500 Dual port X.25/SDLC/FR 10 Floating Point Coprocessor included Yes Quad port X.25/FR 7 FDDI 10 Max. Additional Interface Cards–see supported I/O table 8 port Terminal Multiplexer 4 64 port Terminal Multiplexer 10 PA-RISC PA-8600 Processor @ 550 MHz Graphics/USB kit 1 kit (2 cards) Cache–Instr/data/CPU (KB) 512/1024 Public Key Cryptography 10 Floating Point Coprocessor included Yes HyperFabric 7 Electrical Characteristics TPM estimate (4 CPUs) 34,500 AC Input power 100-240V 50/60 Hz SPECweb99 (4 CPUs) 3,750 Hotswap Power supplies 2 included, 3rd for N+1 Redundant AC power inputs 2 required, 3rd for N+1 Min. memory 256 MB Current requirements at 200V 6.5 A (shared across inputs) Max. memory capacity 16 GB Typical Power dissipation (watts) 1008 W Internal Disks Maximum Power dissipation (watts) 1 1360 W Max. disk mechanisms 4 Power factor at full load .98 Max. disk capacity 292 GB kW rating for UPS loading1 1.3 Standard Integrated I/O Maximum Heat dissipation (BTUs/hour) 1 4380 - (3000 typical) Ultra2 SCSI–LVD Yes Site Preparation 10/100Base-T (RJ-45 connector) Yes Site planning and installation included No RS-232 serial ports (multiplexed from DB-25 port) 3 Depth (mm/inches) 774 mm/30.5 Web Console (including 10Base-T port) Yes Width (mm/inches) 482 mm/19 I/O buses and slots Rack Height (EIA/mm/inches) 7 EIA/311/12.25 Total PCI Slots (supports 66/33 MHz×64/32 bits) 10 Deskside Height (mm/inches) 368 mm/14.5 2 Hot-Plug Twin-Turbo (500 MB/s) and 6 Hot-Plug Turbo slots (250 MB/s) Weight (kg/lbs) Max.
    [Show full text]
  • Analysis of GPGPU Programs for Data-Race and Barrier Divergence
    Analysis of GPGPU Programs for Data-race and Barrier Divergence Santonu Sarkar1, Prateek Kandelwal2, Soumyadip Bandyopadhyay3 and Holger Giese3 1ABB Corporate Research, India 2MathWorks, India 3Hasso Plattner Institute fur¨ Digital Engineering gGmbH, Germany Keywords: Verification, SMT Solver, CUDA, GPGPU, Data Races, Barrier Divergence. Abstract: Todays business and scientific applications have a high computing demand due to the increasing data size and the demand for responsiveness. Many such applications have a high degree of parallelism and GPGPUs emerge as a fit candidate for the demand. GPGPUs can offer an extremely high degree of data parallelism owing to its architecture that has many computing cores. However, unless the programs written to exploit the architecture are correct, the potential gain in performance cannot be achieved. In this paper, we focus on the two important properties of the programs written for GPGPUs, namely i) the data-race conditions and ii) the barrier divergence. We present a technique to identify the existence of these properties in a CUDA program using a static property verification method. The proposed approach can be utilized in tandem with normal application development process to help the programmer to remove the bugs that can have an impact on the performance and improve the safety of a CUDA program. 1 INTRODUCTION ans that the program will never end-up in an errone- ous state, or will never stop functioning in an arbitrary With the order of magnitude increase in computing manner, is a well-known and critical property that an demand in the business and scientific applications, de- operational system should exhibit (Lamport, 1977).
    [Show full text]
  • 3.2 the CORDIC Algorithm
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Improved VLSI architecture for attitude determination computations Permalink https://escholarship.org/uc/item/5jf926fv Author Arrigo, Jeanette Fay Freauf Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California 1 UNIVERSITY OF CALIFORNIA, SAN DIEGO Improved VLSI Architecture for Attitude Determination Computations A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering (Electronic Circuits and Systems) by Jeanette Fay Freauf Arrigo Committee in charge: Professor Paul M. Chau, Chair Professor C.K. Cheng Professor Sujit Dey Professor Lawrence Larson Professor Alan Schneider 2006 2 Copyright Jeanette Fay Freauf Arrigo, 2006 All rights reserved. iv DEDICATION This thesis is dedicated to my husband Dale Arrigo for his encouragement, support and model of perseverance, and to my father Eugene Freauf for his patience during my pursuit. In memory of my mother Fay Freauf and grandmother Fay Linton Thoreson, incredible mentors and great advocates of the quest for knowledge. iv v TABLE OF CONTENTS Signature Page...............................................................................................................iii Dedication … ................................................................................................................iv Table of Contents ...........................................................................................................v
    [Show full text]
  • CORDIC-Like Method for Solving Kepler's Equation
    A&A 619, A128 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833162 & c ESO 2018 Astrophysics CORDIC-like method for solving Kepler’s equation M. Zechmeister Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] Received 4 April 2018 / Accepted 14 August 2018 ABSTRACT Context. Many algorithms to solve Kepler’s equations require the evaluation of trigonometric or root functions. Aims. We present an algorithm to compute the eccentric anomaly and even its cosine and sine terms without usage of other transcen- dental functions at run-time. With slight modifications it is also applicable for the hyperbolic case. Methods. Based on the idea of CORDIC, our method requires only additions and multiplications and a short table. The table is inde- pendent of eccentricity and can be hardcoded. Its length depends on the desired precision. Results. The code is short. The convergence is linear for all mean anomalies and eccentricities e (including e = 1). As a stand-alone algorithm, single and double precision is obtained with 29 and 55 iterations, respectively. Half or two-thirds of the iterations can be saved in combination with Newton’s or Halley’s method at the cost of one division. Key words. celestial mechanics – methods: numerical 1. Introduction expansion of the sine term and yielded with root finding methods a maximum error of 10−10 after inversion of a fifteen-degree Kepler’s equation relates the mean anomaly M and the eccentric polynomial. Another possibility to reduce the iteration is to use anomaly E in orbits with eccentricity e.
    [Show full text]
  • CORDIC V6.0 Logicore IP Product Guide
    CORDIC v6.0 LogiCORE IP Product Guide Vivado Design Suite PG105 August 6, 2021 Table of Contents IP Facts Chapter 1: Overview Navigating Content by Design Process . 5 Core Overview . 5 Feature Summary. 6 Applications . 6 Licensing and Ordering . 7 Chapter 2: Product Specification Performance. 8 Resource Utilization. 9 Port Descriptions . 9 Chapter 3: Designing with the Core Clocking. 12 Resets . 12 Protocol Description – AXI4-Stream . 12 Functional Description. 17 Input/Output Data Representation . 30 Chapter 4: Design Flow Steps Customizing and Generating the Core . 38 System Generator for DSP. 44 Constraining the Core . 44 Simulation . 45 Synthesis and Implementation . 46 Chapter 5: C Model Features . 47 Overview . 47 Installation . 48 C Model Interface. 49 CORDIC v6.0 Send Feedback 2 PG105 August 6, 2021 www.xilinx.com Compiling . 53 Linking. 53 Dependent Libraries . 54 Example . 55 Chapter 6: Test Bench Demonstration Test Bench . 56 Appendix A: Upgrading Migrating to the Vivado Design Suite. 58 Upgrading in the Vivado Design Suite . 58 Appendix B: Debugging Finding Help on Xilinx.com . 62 Debug Tools . 63 Simulation Debug. 64 AXI4-Stream Interface Debug . 65 Appendix C: Additional Resources and Legal Notices Xilinx Resources . 66 Documentation Navigator and Design Hubs . 66 References . 67 Revision History . 67 Please Read: Important Legal Notices . 68 CORDIC v6.0 Send Feedback 3 PG105 August 6, 2021 www.xilinx.com IP Facts Introduction LogiCORE IP Facts Table Core Specifics This Xilinx® LogiCORE™ IP core implements a Versal™ ACAP
    [Show full text]
  • A Review on Hardware Accelerator Design and Implementation of CORDIC Algorithm for a Gaming Application
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-9, July 2020 A Review on Hardware Accelerator Design and Implementation of CORDIC Algorithm for a Gaming Application Trupthi B, Jalendra H E, Srilaxmi C P, Varun M S, Geethashree A Abstract - Co-ordinate Digital rotation computer is the full The conversion of rectangular to polar and polar to form of CORDIC.CORDIC is a process for finding functions rectangular function are the two major operations in using less hardware like shifts, subs/adds and then compares. It's CORDIC. Basically, they are the two different co-ordinates the algorithm used for some elementary functions which are calculated in real-time and many conversions like from to represent the 2D plane. The Rectangular form is rectangular to polar co-ordinate and vice versa. Rectangular to represented by a real part (horizontal axis) and an imaginary polar and polar to rectangular is an important operation in (Vertical axis) part of the vector. The Rectangular form is CORDIC which are generally used in ALUs, wireless shown by a real part (horizontal axis) and an imaginary communications, DSP processors etc. This paper proposes the (Vertical axis) part of the vector [8].The rectangular co- implementation of physical design for CORDIC algorithm for ordinates are in the form of (x, y) where „x‟ stands for a polar to rectangular and rectangular to polar conversions, by the use of RTL code in written in Verilog and fed to pre-processor, horizontal plane and „y‟ stands for the vertical plane from cordic core and post processor.
    [Show full text]
  • Evolving GPU Machine Code
    Journal of Machine Learning Research 16 (2015) 673-712 Submitted 11/12; Revised 7/14; Published 4/15 Evolving GPU Machine Code Cleomar Pereira da Silva [email protected] Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro (PUC-Rio) Rio de Janeiro, RJ 22451-900, Brazil Department of Education Development Federal Institute of Education, Science and Technology - Catarinense (IFC) Videira, SC 89560-000, Brazil Douglas Mota Dias [email protected] Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro (PUC-Rio) Rio de Janeiro, RJ 22451-900, Brazil Cristiana Bentes [email protected] Department of Systems Engineering State University of Rio de Janeiro (UERJ) Rio de Janeiro, RJ 20550-013, Brazil Marco Aur´elioCavalcanti Pacheco [email protected] Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro (PUC-Rio) Rio de Janeiro, RJ 22451-900, Brazil Leandro Fontoura Cupertino [email protected] Toulouse Institute of Computer Science Research (IRIT) University of Toulouse 118 Route de Narbonne F-31062 Toulouse Cedex 9, France Editor: Una-May O'Reilly Abstract Parallel Graphics Processing Unit (GPU) implementations of GP have appeared in the lit- erature using three main methodologies: (i) compilation, which generates the individuals in GPU code and requires compilation; (ii) pseudo-assembly, which generates the individuals in an intermediary assembly code and also requires compilation; and (iii) interpretation, which interprets the codes. This paper proposes a new methodology that uses the concepts of quantum computing and directly handles the GPU machine code instructions. Our methodology utilizes a probabilistic representation of an individual to improve the global search capability.
    [Show full text]
  • A.1 CORDIC Algorithm
    Research on Hardware Intellectual Property Cores Based on Look-Up Table Architecture for DSP Applications HOANG VAN PHUC Doctoral Program in Electronic Engineering Graduate School of Electro-Communications The University of Electro-Communications A thesis submitted for the degree of DOCTOR OF ENGINEERING September 2012 I would like to dedicate this dissertation to my parents, my wife and my daughter. Research on Hardware Intellectual Property Cores Based on Look-Up Table Architecture for DSP Applications APPROVED Asso. Prof. Cong-Kha PHAM, Chairman Prof. Kazushi NAKANO Prof. Yoshinao MIZUGAKI Prof. Koichiro ISHIBASHI Asso. Prof. Takayuki NAGAI Date Approved by Chairman c Copyright 2012 by HOANG Van Phuc All Rights Reserved. 和文要旨 DSPアプリケーションのためのルックアップテーブルアーキテ クチャに基づくハードウェアIPコアに関する研究 ホアン ヴァンフック 電気通信学研究科電子工学専攻博士後期課程 電気通信大学大学院 本論文は,ルックアップテーブル(LUT)アーキテクチャに基づく省面積 かつ高性能なハードウェア IP コアを提案し,DSP アプリケーションに適用 することを目的としている.LUT ベースの IP コアおよびこれらに基づいた 新しい計算システムを提案した.ここで,提案する計算システムには,従来 の演算と提案する IP コアを含む.提案する IP コアには,乗算や二乗計算等 の基本演算と,正弦関数や対数・真数計算等の初等関数が含まれる. まず初めに,高効率な LUT 乗算器および二乗回路の設計を目的として, 2つの方法を提案した.1つは,全幅結果が不要な場合に DSP に応用可能 な打切り定数乗算器である.このアーキテクチャには,LUT ベースの計算と DSP 用の打切り定数乗算器という2つのアプローチを組み合わせた.最適な パラメータと LUT の内容を探索するために,LUT 最適化アルゴリズムの検 討を行った.さらに,固定幅二乗回路向けに LUT ハイブリッドアーキテク チャを改良した.この技術は,二乗回路における性能,誤計算率,複雑さの 間の妥協点を見いだすために,LUT 論理回路と従来の論理回路の両方を採用 したものである. 初等関数の計算については,LUT ベースの計算と線形差分法を組み合わせ て,2つのアーキテクチャを提案した.1つは,ディジタル周波数合成器, 適応信号処理技術および正弦関数生成器に利用可能な正弦関数計算のために, 線形差分法を改良したものである.他の方法と比較して誤計算率が変わらな い一方で,LUT の規模と複雑さを抑える最適パラメータを探索するために数 値解析と最適化を行った.その他に,対数計算および真数計算向けに,疑似
    [Show full text]
  • An Optimization of CORDIC Algorithm and FPGA Implementation
    International Journal of Hybrid Information Technology Vol.8, No.6 (2015), pp.217-228 http://dx.doi.org/10.14257/ijhit.2015.8.6.21 An Optimization of CORDIC Algorithm and FPGA Implementation Rui Xua, Zhanpeng Jiangb, Hai Huangc, Changchun Dongd Department of Integrated circuits design and integrated systems,Harbin University of Science and Technology ,Harbin, Heilongjiang, China [email protected], b [email protected], [email protected] [email protected] Abstract ASIC and FPGA ASIC and FPGA are considered to be the ideal platform for special fast calculations because of the hardware structure, and how to achieve computational algorithm by is the hotpot of research. The CORDIC (Coordinate Rotational Digital Computer) can break the basis functions down to operations of shift and addition or subtraction, which can be used to lay the foundation for the realization of complex logic. But the functions selected by traditional CODIC for angle encoding are too complex, which will lead to some problems, such as too much of area consumption and large delay. In this paper, an optimization of CORDIC algorithm are proposed, which reduce the consumption of Adders and comparators, decrease the complexity and delay of the algorithm implement in hardware. The proposed algorithms are modeled in Verilog Hardware Description Language and implemented with FPGA. The simulation results show that the functions of sine and cosine are realized successfully, and the proposed algorithm not only improves the computation speed but also reduces
    [Show full text]
  • FPGA Technology in Beam Instrumentation and Related Tools
    FPGA technology in beam instrumentation and related tools Javier Serrano CERN, Geneva, Switzerland DIPAC 2005. Lyon, France. 7 June 2005. Plan of the presentation z FPGA architecture basics z FPGA design flow z Performance boosting techniques z Doing arithmetic with FPGAs z Example: RF cavity control in CERN’s Linac 3. DIPAC 2005. Lyon, France. 7 June 2005. A preamble: basic digital design Clk [31:0] DataInB[31:0] [31:0] D[31:0] Q[31:0] [31:0] D[0] Q[0] [31:0] 0 dataBC[31:0] dataSelectC [31:0] [31:0] [31:0] D[31:0] Q[31:0] [31:0] DataOut[31:0] DataSelect [31:0] 1 DataOut[31:0] DataOut_3[31:0] [31:0] High clock rate: [31:0] + [31:0] sum[31:0] DataInA[31:0] [31:0] D[31:0] Q[31:0] 144.9 MHz on a [31:0] [31:0] 6.90 ns dataAC[31:0] Xilinx Spartan IIE. DataSelect D[0] Q[0] D[0] Q[0] dataSelectC dataSelectCD1 Clk [31:0] D[31:0] Q[31:0] [31:0] 0 [31:0] [31:0] [31:0] [31:0] DataInB[31:0] [31:0] D[31:0] Q[31:0] [31:0] [31:0] D[31:0] Q[31:0] [31:0] DataOut[31:0] dataACd1[31:0] [31:0] 1 dataBC[31:0] DataOut[31:0] DataOut_3[31:0] Higher clock rate: [31:0] [31:0] + [31:0] D[31:0] Q[31:0] [31:0] DataInA[31:0] [31:0] D[31:0] Q[31:0] [31:0] 151.5 MHz on the [31:0] [31:0] sum_1[31:0] sum[31:0] dataAC[31:0] 6.60 ns same chip.
    [Show full text]
  • Readingsample
    Embedded Robotics Mobile Robot Design and Applications with Embedded Systems Bearbeitet von Thomas Bräunl Neuausgabe 2008. Taschenbuch. xiv, 546 S. Paperback ISBN 978 3 540 70533 8 Format (B x L): 17 x 24,4 cm Gewicht: 1940 g Weitere Fachgebiete > Technik > Elektronik > Robotik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. CENTRAL PROCESSING UNIT . he CPU (central processing unit) is the heart of every embedded system and every personal computer. It comprises the ALU (arithmetic logic unit), responsible for the number crunching, and the CU (control unit), responsible for instruction sequencing and branching. Modern microprocessors and microcontrollers provide on a single chip the CPU and a varying degree of additional components, such as counters, timing coprocessors, watchdogs, SRAM (static RAM), and Flash-ROM (electrically erasable ROM). Hardware can be described on several different levels, from low-level tran- sistor-level to high-level hardware description languages (HDLs). The so- called register-transfer level is somewhat in-between, describing CPU compo- nents and their interaction on a relatively high level. We will use this level in this chapter to introduce gradually more complex components, which we will then use to construct a complete CPU. With the simulation system Retro [Chansavat Bräunl 1999], [Bräunl 2000], we will be able to actually program, run, and test our CPUs.
    [Show full text]
  • A Unified Reconfigurable CORDIC Processor for Floating-Point Arithmetic
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2018 doi:10.20944/preprints201806.0393.v1 Article A Unified Reconfigurable CORDIC Processor for Floating-Point Arithmetic Linlin Fang 1, Bingyi Li 1, Yizhuang Xie 1,* and He Chen 1 1 Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.F.); [email protected] (B.L.); [email protected] (Y.X.); [email protected] (H.C.) * Correspondence: [email protected]; Tel.: +86-156-5279-7282 Abstract: This paper presents a unified reconfigurable coordinate rotation digital computer (CORDIC) processor for floating-point arithmetic. It can be configured to operate in multi-mode to achieve a variety of operations and replaces multiple single-mode CORDIC processors. A reconfigurable pipeline-parallel mixed architecture is proposed to adapt different operations, which maximizes the sharing of common hardware circuit and achieves the area-delay-efficiency. Compared with previous unified floating-point CORDIC processors, the consumption of hardware resources is greatly reduced. As a proof of concept, we apply it to 16384 16384 points target Synthetic Aperture Radar (SAR) imaging system, which is implemented on Xilinx XC7VX690T FPGA platform. The maximum relative error of each phase function between hardware and software computation and the corresponding SAR imaging result can meet the accuracy index requirements. Keywords: reconfigurable architecture; CORDIC; Field Programmable Gate Array(FPGA); SAR imaging 1. Introduction The CORDIC algorithm involves a simple shift-and-add iterative procedure to perform several computing tasks. It can execute the rotation of a two-dimensional (2-D) vector in linear, circular, and hyperbolic coordinates systems [1].
    [Show full text]