Signposts in Cyberspace: the Domain Name System and Internet Navigation

Total Page:16

File Type:pdf, Size:1020Kb

Signposts in Cyberspace: the Domain Name System and Internet Navigation Prepublication Copy—Subject to Further Editorial Correction Signposts in Cyberspace: The Domain Name System and Internet Navigation Committee on Internet Navigation and the Domain Name System: Technical Alternatives and Policy Implications Computer Science and Telecommunications Board Division on Engineering and Physical Sciences NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu Prepublication Copy—Subject to Further Editorial Correction THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, D.C. 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by the U.S. Department of Commerce and the National Science Foundation under Grant No. ANI-9909852 and by the National Research Council. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Commerce Department. International Standard Book Number Cover designed by Jennifer M. Bishop. Copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, D.C. 20055, (800) 624-6242 or (202) 334-3313 in the Washington metropolitan area. Internet, http://www.nap.edu Copyright 2005 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Prepublication Copy—Subject to Further Editorial Correction The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org Prepublication Copy—Subject to Further Editorial Correction Prepublication Copy—Subject to Further Editorial Correction COMMITTEE ON INTERNET NAVIGATION AND THE DOMAIN NAME SYSTEM: TECHNICAL ALTERNATIVES AND POLICY IMPLICATIONS ROGER LEVIEN, Strategy & Innovation Consulting, Chair S. ROBERT AUSTEIN, Internet Systems Consortium STANLEY M. BESEN, Charles River Associates CHRISTINE L. BORGMAN, University of California, Los Angeles TIMOTHY CASEY, University of Nevada HUGH DUBBERLY, Dubberly Design Office PATRIK FÄLTSTRÖM, Cisco Systems PER-KRISTIAN HALVORSEN, Hewlett-Packard Labs MARYLEE JENKINS, Arent Fox Kintner Plotkin & Kahn, PLLC JOHN C. KLENSIN, Independent Consultant MILTON L. MUELLER, Syracuse University SHARON NELSON, Washington State Attorney General's Office CRAIG PARTRIDGE, BBN Technologies WILLIAM RADUCHEL, Ruckus Network HAL R. VARIAN, University of California, Berkeley Staff ALAN S. INOUYE, Study Director CHARLES BROWNSTEIN, Director MARJORY S. BLUMENTHAL, Director (through June 2003) MARGARET MARSH HUYNH, Senior Program Assistant KRISTEN BATCH, Research Associate v Prepublication Copy—Subject to Further Editorial Correction COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD DAVID E. LIDDLE, U.S. Venture Partners, Co-Chair JEANNETTE M. WING, Carnegie Mellon University, Co-Chair ERIC BENHAMOU, Benhamou Global Ventures, LLC DAVID D. CLARK, Massachusetts Institute of Technology, CSTB Chair Emeritus WILLIAM DALLY, Stanford University MARK E. DEAN, IBM Almaden Research Center DEBORAH ESTRIN, University of California, Los Angeles JOAN FEIGENBAUM, Yale University HECTOR GARCIA-MOLINA, Stanford University KEVIN KAHN, Intel Corporation JAMES KAJIYA, Microsoft Corporation MICHAEL KATZ, University of California, Berkeley RANDY H. KATZ, University of California, Berkeley WENDY A. KELLOGG, IBM T.J. Watson Research Center SARA KIESLER, Carnegie Mellon University BUTLER W. LAMPSON, Microsoft Corporation, CSTB Member Emeritus TERESA H. MENG, Stanford University TOM M. MITCHELL, Carnegie Mellon University DANIEL PIKE, GCI Cable and Entertainment ERIC SCHMIDT, Google Inc. FRED B. SCHNEIDER, Cornell University WILLIAM STEAD, Vanderbilt University ANDREW J. VITERBI, Viterbi Group, LLC CHARLES N. BROWNSTEIN, Director KRISTEN BATCH, Research Associate JENNIFER M. BISHOP, Program Associate JANET BRISCOE, Manager, Program Operations JON EISENBERG, Senior Program Officer RENEE HAWKINS, Financial Associate MARGARET MARSH HUYNH, Senior Program Assistant HERBERT S. LIN, Senior Scientist LYNETTE I. MILLETT, Senior Program Officer JANICE SABUDA, Senior Program Assistant GLORIA WESTBROOK, Senior Program Assistant BRANDYE WILLIAMS, Staff Assistant For more information on CSTB, see its Web site at <http://www.cstb.org>, write to CSTB, National Research Council, 500 Fifth Street, N.W., Washington, DC 20001, call (202) 334-2605, or e-mail the CSTB at [email protected]. vi Prepublication Copy—Subject to Further Editorial Correction Preface The Domain Name System (DNS), which was developed in the early 1980s, provides a way of associating alphanumeric names, which are easier for humans to use, with the numerical addresses that designate every location on the Internet. The system of DNS servers distributed across the Internet invisibly converts the names—serving as signposts in cyberspace—into the numerical addresses required by network routers to reach the signposted locations. The mnemonic quality of domain names became a practical necessity when the rapid increase in the use of e-mail and the World Wide Web (Web) caused the number of Internet users and uses to increase tremendously. Web sites often became known to their visitors by their distinctive domain names—for example, pepsi.com or whitehouse.gov. Carefully chosen domain names often enabled a searcher to navigate to a site simply by guessing (e.g., www.un.org). Consequently, those signposts gained economic, social, cultural, and political value and they became the objects of pride, competition, and dispute. It was fitting, therefore, that the DNS also provided the name—the “Dot Com Era”—for the period of the 1990s when “gold rush fever” drove frenzied efforts to stake out and exploit virtually every potentially valuable site on the Web. Inevitably, such efforts led to intense conflicts, especially disputes involving trademarks, which provided the impetus for the 1998 congressional mandate to initiate this study (see Box P.1). However, the passage of time, the rapid evolution of the Internet and the DNS, the additional and differing interests of the funding agencies, and the logic of the committee’s charter have resulted in a report whose scope differs in some respects from the original congressional request, but is as a result more responsive to the current interests of the report’s sponsors and audience. CURRENT CONTEXT AND STUDY TASK Although the initial feverish period of Internet exploitation appears to have passed, in its third decade the DNS will face new challenges arising from continued growth in the size and scope of the Internet and from its increasing integration into almost every aspect of human activity almost everywhere on the globe. The Internet will need more signposts, in more languages, to satisfy more uses and users. And the DNS will have to be carefully developed and managed to ensure that it can meet those needs while
Recommended publications
  • ARIN History and Services
    History and Services www.arin.net Table of Contents Part I: History..............................................................................................3 How did ARIN get started?..................................................................3 Where does ARIN fit in the “Big Picture”?.......................................4 Key Organizations - ICANN, the NRO, and PTI/IANA..................5 ARIN Community & Membership......................................................7 Stakeholders.............................................................................................7 ARIN the Organization..........................................................................8 ARIN Staff...................................................................................................8 ARIN Elections........................................................................................12 Part II: Services........................................................................................13 The Internet Numbering Landscape.............................................13 ARIN’S Strategic Plan..........................................................................16 Scope of ARIN Services – the things we do for you!................16 Get Involved...........................................................................................20 Acronym Quick Guide.........................................................................21 2 Part I: History How did ARIN get started? 1960s to 1980s: Internet Foundation The formation of
    [Show full text]
  • Alan Emtage Coach Nick's Fav Tech Innovators
    Coach Nick’s Fav Tech Innovators Alan Emtage Innovation - The Search Engine: In 1989, Alan Emtage conceived of and implemented Archie, the world’s first Internet search engine. In doing so, he pioneered many of the techniques used by public search engines today. Coach Nick Says: “The search engine was named after, Archie, a famous comic book that I read as a kid! It changed the way people learn.” Coach Nick’s Fav Tech Innovators Ray Tomlinson Innovation - E-mail: In 1971, Ray Tomlinson developed an e-mail program and the @ sign. He is internationally known and credited as the inventor of email. WVMEN Coach Nick Says: “When I worked in the WV State Department of Education, we started using e-mail in our high schools in 1984 as part of WVMEN, the first statewide micro-computing network in the Nation!” Coach Nick’s Fav Tech Innovators Doug Engelbart Innovation - The Computer Mouse: Doug Engelbart invented the computer mouse in the early 1960s in his research lab at Stanford Research Institute (now SRI International). The first prototype was built in 1964, the patent application was filed in 1967, and US Patent was awarded in 1970. Coach Nick Says: “Steve Jobs acquired — some say stole — the mouse concept from the Xerox PARC Labs in Palo Alto in 1979 and changed the world.” Coach Nick’s Fav Tech Innovators Steve Wozniak & Steve Jobs Innovation - The First Apple: The Apple I, also known as the Apple-1, was designed and hand-built by Steve Wozniak. Wozniak’s friend Steve Jobs had the idea of selling the computer.
    [Show full text]
  • A Letter to the FCC [PDF]
    Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Amendment of Part 0, 1, 2, 15 and 18 of the ) ET Docket No. 15­170 Commission’s Rules regarding Authorization ) Of Radio frequency Equipment ) ) Request for the Allowance of Optional ) RM­11673 Electronic Labeling for Wireless Devices ) Summary The rules laid out in ET Docket No. 15­170 should not go into effect as written. They would cause more harm than good and risk a significant overreach of the Commission’s authority. Specifically, the rules would limit the ability to upgrade or replace firmware in commercial, off­the­shelf home or small­business routers. This would damage the compliance, security, reliability and functionality of home and business networks. It would also restrict innovation and research into new networking technologies. We present an alternate proposal that better meets the goals of the FCC, not only ensuring the desired operation of the RF portion of a Wi­Fi router within the mandated parameters, but also assisting in the FCC’s broader goals of increasing consumer choice, fostering competition, protecting infrastructure, and increasing resiliency to communication disruptions. If the Commission does not intend to prohibit the upgrade or replacement of firmware in Wi­Fi ​ ​ devices, the undersigned would welcome a clear statement of that intent. Introduction We recommend the FCC pursue an alternative path to ensuring Radio Frequency (RF) compliance from Wi­Fi equipment. We understand there are significant concerns regarding existing users of the Wi­Fi ​ spectrum, and a desire to avoid uncontrolled change. However, we most strenuously advise against prohibiting changes to firmware of devices containing radio components, and furthermore advise against allowing non­updatable devices into the field.
    [Show full text]
  • Understanding the Impact of Network Infrastructure Changes Using Large-Scale Measurement Platforms
    Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms Vaibhav Bajpai Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms by Vaibhav Bajpai A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Prof. Dr. Jürgen Schönwälder Jacobs University Bremen, Germany Dr. Kinga Lipskoch Jacobs University Bremen, Germany Prof. Dr. Filip De Turck University of Ghent, Belgium Date of Defense: May 30, 2016 DECLARATION I, hereby declare that I have written this PhD thesis independently, unless where clearly stated otherwise. I have used only the sources, the data and the support that I have clearly mentioned. This PhD thesis has not been submitted for conferral of degree elsewhere. I confirm that no rights of third parties will be infringed by the publication of this thesis. Bremen, Germany, May 30, 2016 Vaibhav Bajpai This thesis is dedicated to my mom for her love, endless support and encouragement ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Jürgen Schönwälder for providing me constant feedback and support throughout the entire duration of my doctoral research. I would also like to thank my thesis committee consisting of Jürgen Schönwälder, Kinga Lipskoch and Filip De Turck for guiding and supporting my doctoral research. I am grateful to my co-authors: Steffie Jacob Eravuchira, Saba Ahsan, Radek Krejˇcí,Jörg Ott and Jürgen Schönwälder with whom I learned to be a productive collaborator. Special thanks to: Sam Crawford, Philip Eardley, Trevor Burbridge, Arthur Berger, Daniel Karrenberg, Robert Kisteleki, Al Morton, Frank Bulk, Dan Wing and Andrew Yourtchenko for providing valuable and constructive feedback for improving my manuscripts.
    [Show full text]
  • Tim Berners-Lee
    Le Web Quelques repères Informations compilées par Omer Pesquer - http://infonum.omer.mobi/ - @_omr Internet Mapping Project, Kevin Kelly, 1999, https://kk.org/ct2/the-internet-mapping-project La proposition d'Alan Levin pour l'Internet Mapping Project https://www.flickr.com/photos/cogdog/24868066787/ 3 Hypertexte «Une structure de fchier pour l'information complexe, changeante et indéterminée » Ted Nelson, 1965 http://www.hyperfiction.org/texts/whatHypertextIs.pdf + https://fr.wikipedia.org/wiki/Hypertexte http://xanadu.com.au/ted/XUsurvey/xuDation.html THE INTERNET 2015 - THE OPTE PROJECT (juillet 2015) - Barrett Lyon http://www.opte.org/the-intern et/ 5 1990... Un accès universel à un large univers de documents En mars 1989, Tim Berners-Lee soumettait une Le 6 août 1991, Tim Berners-Lee annonce proposition d'un nouveau système de gestion de publiquement sur « alt.hypertext » l'existence du l'information à son supérieur. WorldWideWeb. http://info.cern.ch/Proposal.html http://info.cern.ch Le Web « Les sites (Web) doivent être en mesure d'interagir dans un espace unique et universel. » Tim Berners-Lee http://fr.wikiquote.org/wiki/Tim_Berners-Lee +http://www.w3.org/People/Berners-Lee/WorldWideWeb.html 8 9/73 Les Horribles Cernettes - première photo publiée sur World Wide Web en 1992. http://en.wikipedia.org/wiki/Les_Horribles_Cernettes Logo historique du World Wide Web par Robert Cailliau http://fr.wikipedia.org/wiki/Fichier:WWW_logo_by_Robert_Cailliau.svg Le site Web du Ministère de la Culture en novembre 1996 Le logo est GIF animé : https://twitter.com/_omr/status/711125480477487105 "Une archéologie des premiers sites web de musées en France" https://www.facebook.com/804024616337535/photos/?tab=album&album_id=1054783704594957 11/73 1990..
    [Show full text]
  • Site Finder and Internet Governance
    345 Site Finder and Internet Governance Jonathan Weinberg* 347 INTRODUCTION 348 PART 1. 354 PART 2. 361 PART 3. 366 PART 4. 375 CONCLUSION Copyright © 2004 by Jonathan Weinberg. * Professor of Law, Wayne State University. I am grateful to Michael Froomkin, Mark Lemley, David Maher, Milton Mueller, and Jessica Litman for their comments, and to Susan Crawford and Bret Fausett for answer- ing questions along the way. None of them, of course, is responsible for anything I say here. This essay reflects developments taking place through 30 November 2003. 347 Site Finder and Internet Governance Jonathan Weinberg INTRODUCTION ON SEPTEMBER 15, 2003, VeriSign, Inc.—the company that operates the data- bases that allow internet users to reach any internet resource ending in “.com” or “.net”—introduced a new service it called Site Finder. Less than three weeks later, after widespread protest from the technical community, at least three law- suits, and a stern demand from ICANN (the Internet Corporation for Assigned Names and Numbers, which has undertaken responsibility for managing the internet domain name space), VeriSign agreed to shut Site Finder down.1 In between those dates the internet community saw a passionate debate over the roles of ICANN, VeriSign, and the internet’s technical aristocracy in managing the domain name space. VeriSign has charged that its opponents’ reactions were the product of “obsolete thinking” that would disable it from “build[ing] a commercial busi- ness.”2 ICANN, for its part, is seeking to enact a procedure under which top-level domain name registry operators such as VeriSign must seek ICANN’s approval before offering new services or taking any “significant actions that...could affect the operational stability, reliability, security or global interoperability of...the Internet.”3 Some see fault on all sides: “It’s hard to say,” writes one commenta- tor, “in this case who is being more anti-competitive, ICANN or VeriSign.”4 In this essay, I will try to unpack the Site Finder story.
    [Show full text]
  • To the Members of the Senate Judiciary Committee: We, The
    To the members of the Senate Judiciary Committee: We, the undersigned, have played various parts in building a network called the Internet. We wrote and debugged the software; we defined the standards and protocols that talk over that network. Many of us invented parts of it. We're just a little proud of the social and economic benefits that our project, the Internet, has brought with it. We are writing to oppose the Committee's proposed new Internet censorship and copyright bill. If enacted, this legislation will risk fragmenting the Internet's global domain name system (DNS ), create an environment of tremendous fear and uncertainty for technological innovation, and seriously harm the credibility of the United States in its role as a steward of key Internet infrastructure. In exchange for this, the bill will introduce censorship that will simultaneously be circumvented by deliberate infringers while hampering innocent parties' ability to communicate. All censorship schemes impact speech beyond the category they were intended to restrict, but this bill will be particularly egregious in that regard because it causes entire domains to vanish from the Web, not just infringing pages or files. Worse, an incredible range of useful, law-abiding sites can be blacklisted under this bill. These problems will be enough to ensure that alternative name-lookup infrastructures will come into widespread use, outside the control of US service providers but easily used by American citizens. Errors and divergences will appear between these new services and the current global DNS, and contradictory addresses will confuse browsers and frustrate the people using them.
    [Show full text]
  • Internic Faqs on the Domain Names, Registrars, and Registration
    InterNIC I FAQs on the Domain Names, Registrars, and Registration 12/4/11 1:20 PM InterNlC Home ~Re istrsrs FAQ Whois InterNIC FAQs on the Domain Names, Registrars, and Registration The following is a list of frequently asked questions (FAQs) about the domain name registration process and the new competitive registration environment. It is expected that this list will be updated frequently, so please check back often. What is the domain name system? The Domain Name System (DNS) helps users to find their way around the Internet. Every computer on the Internet has a unique address — just like a telephone number — which is a rather complicated string of numbers. It is called its "IP address" (IP stands for "Internet Protocol" ). IP Addresses are hard to remember. The DNS makes using the Internet easier by allowing a familiar string of letters (the "domain name") to be used instead of the arcane IP address. So instead of typing 207.151.159.3, you can type www.internic.net. It is a "mnemonic" device that makes addresses easier to remember. What does it mean to "register" a domain name? When you register a domain name, you are inserting an entry into a directory of all the domain names and their corresponding computers on the Internet. How do I register a domain name? Domain names ending with .aero, .biz, .corn, .coop, .info, .museum, .name, .net, .org, or .pro can be registered through many different companies (known as "registrars") that compete with one another. A listing of these companies appears in the Re istrar Directo on this site.
    [Show full text]
  • About | Network Startup Resource Center
    UO Home | Dept Index HOME ABOUT ACTIVITIES NEWS SUPPORTERS CALENDAR Enter your keywords Search About Index Core Support Main Focus Areas Overview Early History: 1990's International TCP/IP Training Workshops Computing, Networking Equipment & Book Donations Hosting Network Engineering Interns Financial and Operational Support Core Support The NSRC is funded by grant number 1451045 from the International Research Network Connections (IRNC) program of the National Science Foundation and Google, with additional contributions from dozens of public and private organizations. The NSRC works closely with several University of Oregon organizations, including the Route Views project, the Network and Telecommunication Services group, UO Libraries, and the Wired Humanities Project (WHP). Main Focus Areas Helping develop and deploy Internet infrastructure in R&E networks Assisting US scientists with international research partnerships World Map of Assistance from 1992-2014 Providing technical information and tools to network operators Providing direct network engineering and design assistance Helping organize regional training workshops and centers Coordinating donations and shipments of networking books and equipment Helping develop Internet eXchange points Helping build wireless network infrastructure Hosting network engineering interns Advising on how to establish help desk/user support services Maintaining a historical archive of Internet connectivity Overview The Network Startup Resource Center works directly with the indigenous network engineers and operators who develop and maintain the Internet infrastructure in their respective countries and regions by providing technical information, engineering assistance, training, donations of networking books, equipment and other resources. The end goal in this work is to make it easier for local scientists, engineers and educators to collaborate via the Internet with their international colleagues by helping to connect communities of interest.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • A Long Time Ago, in a Meeting Room Far, Far Away...Or Maybe 17 Years
    A long time ago, in a meeting room far, far away.... ... or maybe 17 years ago, in Houston, Texas... ...work in the IETF began on... DNSSEC For their efforts with DNSSEC, the IETF wishes to thank: Joe Abley - Danny Aerts Alain Aina - Mehmet Akcin Jaap Akerhuis - Mark Andrews Roy Arends - Derek Atkins Rob Austein - Roy Badami Alan Barrett - Doug Barton Rickard Bellgrim - Ray Bellis Steve Bellovin - Dan Bernstein David Blacka - Stéphane Bortzmeyer Eric Brunner-Williams - Len Budney Randy Bush - Bruce Campbell Vint Cerf - K.C. Claffy Alan Clegg - David Conrad Michelle S. Cotton - Olivier Courtay John Crain - Dave Crocker Steve Crocker - Alex Dalitz Joao (Luis Silva) Damas Hugh Daniel - Kim Davies John Dickinson - Vasily Dolmatov Lutz Donnerhacke - Mats Dufberg Francis Dupont - Donald Eastlake Anne-Marie Eklund-Löwinder Howard Eland - Robert Elz Patrik Fältström - Mark Feldman Ondrej Filip - Martin Fredriksson Alex Gall - James M. Galvin Joe Gersch - Demi Getchko Miek Gieben - John Gilmore Steve Goodbarn - James Gould Michael Graff - Chris Griffiths Olafur Gudmundsson - Gilles Guette Andreas Gustafsson Jun-ichiro Itojun Hagino Staffan Hagnell Phillip Hallam-Baker Ilja Hallberg - Bob Halley Cathy Handley - Wes Hardaker Ted Hardie - Ashley Heineman Jeremy Hitchcock - Bernie Hoeneisen Alfred Hoenes - Paul Hoffman Scott Hollenbeck - Russ Housley Geoff Houston - Walter Howard Bert Hubert - Greg Hudson Christian Huitema - Shumon Huque Johan Ihren - Stephen Jacob Jelte Jansen - Rodney Joffe Simon Josefsson - Daniel Kalchev Andris Kalnozols - Dan
    [Show full text]
  • DRI2020 Rettskilder Og Informasjonssøking
    DRI2020 Rettskilder og informasjonssøking Søkemotorer: Troverdighet og synlighet Gisle Hannemyr Ifi, høstsemesteret 2014 Opprinnelsen til fritekstsøk • Vedtak i Pennsylvania en gang på slutten av 1950-tallet om å bytte ut begrepet “retarded child” i diverse lover med det mer politisk korrekte “special child”. • Uoverkommelig å finne alle forekomster manuellt. • Deler av lovsamlingen var tastet inn på hullkort. John F. Horty fikk utvided databasen til å omfatte hele lovsamlingen med komemntarer. • Kilde: John F. Horty, “Experience with the Application of Electronic Data Processing Systems in General Law”, Modern Uses of Logic in Law, December 1960. 2014 Gisle Hannemyr Side #2 1 The Internet: The Resource discovery problem • The existence of digital resources on the Internet led to formulation of “The Resource Discovery Problem”. • First formulated by Alan Emtage and Peter Deutsch in Archie - an Electronic Directory Service for the Internet1 (1992) . «Before a user can effectively exploit any of the services offered by the Internet community or access any information provided by such services, that user must be aware of both the existence of the service and the host or hosts on which it is available.» 1) Archie was a search engine into ftp-space that pre-dated any web-oriented search engines. 2014 Gisle Hannemyr Page #3 The Resource discovery problem • So the resorce discovery problem encompasses not only to establish the existence and location of resources, but: . If the discovery process yields pointers to several alternative resources, some means to qualify them and to identify the resource or resoures that provides the “best fit” for the problem at hand.
    [Show full text]