Understanding the Impact of Network Infrastructure Changes Using Large-Scale Measurement Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Impact of Network Infrastructure Changes Using Large-Scale Measurement Platforms Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms Vaibhav Bajpai Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms by Vaibhav Bajpai A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Prof. Dr. Jürgen Schönwälder Jacobs University Bremen, Germany Dr. Kinga Lipskoch Jacobs University Bremen, Germany Prof. Dr. Filip De Turck University of Ghent, Belgium Date of Defense: May 30, 2016 DECLARATION I, hereby declare that I have written this PhD thesis independently, unless where clearly stated otherwise. I have used only the sources, the data and the support that I have clearly mentioned. This PhD thesis has not been submitted for conferral of degree elsewhere. I confirm that no rights of third parties will be infringed by the publication of this thesis. Bremen, Germany, May 30, 2016 Vaibhav Bajpai This thesis is dedicated to my mom for her love, endless support and encouragement ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Jürgen Schönwälder for providing me constant feedback and support throughout the entire duration of my doctoral research. I would also like to thank my thesis committee consisting of Jürgen Schönwälder, Kinga Lipskoch and Filip De Turck for guiding and supporting my doctoral research. I am grateful to my co-authors: Steffie Jacob Eravuchira, Saba Ahsan, Radek Krejˇcí,Jörg Ott and Jürgen Schönwälder with whom I learned to be a productive collaborator. Special thanks to: Sam Crawford, Philip Eardley, Trevor Burbridge, Arthur Berger, Daniel Karrenberg, Robert Kisteleki, Al Morton, Frank Bulk, Dan Wing and Andrew Yourtchenko for providing valuable and constructive feedback for improving my manuscripts. I also thank all the anonymous reviewers that helped improve this research work during the peer-review process. I further thank Sam Crawford, Jamie Mason and Karen Davis from Sam- Knows for providing me constant technical support on the SamKnows infras- tructure. My research on measuring IPv6 performance wouldn’t have been possible without their help. I also thank Daniel Karrenberg, Philip Homburg, Robert Kisteleki, Emile Aben and Vesna Manojlovic from RIPE NCC for supporting my research work using the RIPE Atlas measurement platform. I also like to thank Philip Eardley, Trevor Burbridge, Andrea Soppera, Olivier Bonaventure and all Leone and Flamingo project colleagues that pro- moted my growth as a researcher. I am also grateful to Christian Kaufmann, Marco Hogewoning and Fred Baker for giving me an opportunity to present my research at RIPE and IETF meetings. I also would like to thank all the volunteers who hosted a SamKnows probe for this research activity (sorted by alphabetical order): Aiko Pras, Alex Buie, Andrea Soppera, Antonio Prado, Antonio Querubin, Bart Van Der Veer, Bayani Benjamin Lara, Brandon Ross, Chiang Fong Lee, Chris Baker, Clinton Work, Dario Ercole, Edoardo Martelli, Emile Aben, Eric Vyncke, Erik Taraldsen, Faruk Sejdic, Frank Bulk, Fuminori Tany Tanizaki, Heinrich Stamerjohanns, Javier Henderson, Jens Hoffmann, Jesse Sowell, Joel Maslak, Jon Thompson, Jordi Palet, Josh Hoge, Juan Cerezo, Juan Cordero, Jürgen Schönwälder, Kawashima Masanobu, Krunal Shah, Lucas do Amaral Saboya, Marco Sommani, Marian Neagul, Martin Neitzel, Masaki Tagawa, Mat Ford, Mathew Newton, Matthieu Bouthors, Michael Carey, Michael Richardson, Michael Van Norman, Mikael Abrahamsson, Mike Taylor, Mircea Suciu, Nick Chettle, Nishal Goburdhan, Ole Troan, Owen DeLong, Pedro Tumusok, Per Olsson, Peter Bulckens, Phillip Remaker, Radek Krejˇcí,Richard Patterson, Ryan Rawdon, Saba Ahsan, Sergey Sarayev, Steffie Jacob Eravuchira, Steinar Haug, Stephen Strowes, Steve Bauer, Tero Marttila, Thibault Cholez, Tim Chown, Tim Martin, Tobias Oetiker, Torbjorn Eklov, Trond Hastad, Vlad Ungureanu, Wouter de Vries, Yasuyuki Kaneko My immeasurable gratitude to my mother and my brother Gaurav Bajpai for providing me continuous encouragement and for proof-reading my thesis. This work was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) grant no. 317647 (Leone). This work was also partly funded by Flamingo, a Network of Excellence project (ICT- 318488) supported by the European Commission under its Seventh Framework Programme. ix ABSTRACT A number of large-scale network measurement platforms have emerged in the last few years. These platforms have deployed thousands of measurement probes at strategic locations within the access and backbone networks and at residential gateways. The primary goal of these efforts is typically to measure the performance of broadband access networks and to help regulators sketch better policy decisions. In this dissertation we expand the goal further by using large-scale mea- surement platforms to understand the impact of network infrastructure changes. We utilise probes deployed at the edge of the network to measure: a) IPv6 performance and b) access network performance. This dissertation largely provides three main contributions: • Survey on Internet Performance Measurement Platforms: Initially, measurement platforms were deployed to measure the topology of the Internet. Such topology measurement platforms have been surveyed in the past [1, 2, 3]. In the last couple of years, this focus has evolved towards the measurement of network performance. This has been sup- ported by the deployment of a number of performance measurement platforms. We provide a survey of such Internet performance measure- ment platforms [4]. For each performance measurement platform, we present its coverage, scale, lifetime, deployed metrics and measurement tools, architecture and overall research impact. Furthermore, we discuss standardization efforts that are currently being pursued in this space. • Measuring IPv6 Performance: A large focus of IPv6 measurement studies in the past has been on measuring IPv6 adoption [5, 6, 7] on the Internet. However, there has been very little to no study [8] on measuring IPv6 performance. We measure IPv6 performance from the edge of the network to popular content services on the Internet. We present metrics, measurement tools, measurement insights and experi- ence from studying geographically varied IPv6 networks. We provide a comparison of how content delivery [9, 10] over IPv6 compares to that of IPv4. We also identify and document glitches in this content delivery that can help improve user experience over IPv6. Our longitudinal observations also identify areas of improvements [11] in the standards work for the IPv6 operations community at the IETF. • Measuring Access Network Performance: Last-mile latency is a key broadband network performance indicator. However little is known [12, 13] about the characteristics of last-mile latency in access networks. We perform a characterization of last-mile latency by time of day, by subscriber location, by broadband product subscription and by access technology used by the DSL modem. We show that DSL deployments not only tend to enable interleaving on the last-mile, but also employ multiple depth levels that change over time. Our characterization of last-mile latency can be used by simulation studies to model DSL, cable and fibre access links in the future. xi JOURNALPUBLICATIONS 1. Vaibhav Bajpai, Steffie Jacob Eravuchira, Jürgen Schönwälder. Lessons Learned from using the RIPE Atlas Platform for Measurement Research ACM Computer Communication Review (CCR) [Editorial], July 2015 [ISI Impact Factor: 1.40, 2015]. http://dx.doi.org/10.1145/2805789. 2805796 2. Vaibhav Bajpai, Jürgen Schönwälder. A Survey on Internet Perfor- mance Measurement Platforms and Related Standardization Efforts. IEEE Communications Surveys & Tutorials (COMST), April 2015: [ISI Impact Factor: 9.22, 2015]. http://dx.doi.org/10.1109/COMST.2015. 2418435 CONFERENCEPUBLICATIONS 1. Vaibhav Bajpai, Jürgen Schönwälder. IPv4 versus IPv6 - Who con- nects faster? IFIP Networking Conference, May 2015 [Acceptance Rate: 23.3%, 47=202]. http://dx.doi.org/10.1109/IFIPNetworking.2015. 7145323 2. Saba Ahsan, Vaibhav Bajpai, Jörg Ott, Jürgen Schönwälder. Measuring YouTube from Dual-Stacked Hosts. Passive and Active Measurement Conference (PAM), March 2015 [Acceptance Rate: 27%, 27=100]. Also presented at the IRTF / ISOC Workshop on Research and Applications of Internet Measurements (RAIM), October 2015. http://dx.doi.org/ 10.1007/978-3-319-15509-8_19 3. Vaibhav Bajpai, Johannes Schauer, Jürgen Schönwälder. NFQL: A Tool for Querying Network Flow Records. IFIP/IEEE International Sym- posium on Integrated Network Management (IM). May 2013. http: //ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573045 WORKSHOPPUBLICATIONS 1. Vaibhav Bajpai, Jürgen Schönwälder. Measuring the Effects of Happy Eyeballs. ACM / IRTF / ISOC Applied Networking Research Workshop (ANRW), July 2016. [Acceptance Rate: 60%, 18=30]. http://dx.doi. org/10.1145/2959424.2959429 2. Vaibhav Bajpai, Jürgen Schönwälder. Understanding the Impact of Net- work Infrastructure Changes using Large-Scale Measurement Platforms. Autonomous Infrastructure, Management & Security (AIMS), June 2013. [Acceptance Rate: 50%, 07=14]. http://dx.doi.org/10.1007/978-3- 642-38998-6_5 xiii POSTERS 1. Vaibhav Bajpai, Radek Krejˇcí. Managing SamKnows Probes using NETCONF. IEEE/IFIP Network Operations and Management Sym- posium (NOMS), May 2014. http://dx.doi.org/10.1109/NOMS.2014. 6838279. 2. Vaibhav Bajpai, Jürgen Schönwälder.
Recommended publications
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • A Long Time Ago, in a Meeting Room Far, Far Away...Or Maybe 17 Years
    A long time ago, in a meeting room far, far away.... ... or maybe 17 years ago, in Houston, Texas... ...work in the IETF began on... DNSSEC For their efforts with DNSSEC, the IETF wishes to thank: Joe Abley - Danny Aerts Alain Aina - Mehmet Akcin Jaap Akerhuis - Mark Andrews Roy Arends - Derek Atkins Rob Austein - Roy Badami Alan Barrett - Doug Barton Rickard Bellgrim - Ray Bellis Steve Bellovin - Dan Bernstein David Blacka - Stéphane Bortzmeyer Eric Brunner-Williams - Len Budney Randy Bush - Bruce Campbell Vint Cerf - K.C. Claffy Alan Clegg - David Conrad Michelle S. Cotton - Olivier Courtay John Crain - Dave Crocker Steve Crocker - Alex Dalitz Joao (Luis Silva) Damas Hugh Daniel - Kim Davies John Dickinson - Vasily Dolmatov Lutz Donnerhacke - Mats Dufberg Francis Dupont - Donald Eastlake Anne-Marie Eklund-Löwinder Howard Eland - Robert Elz Patrik Fältström - Mark Feldman Ondrej Filip - Martin Fredriksson Alex Gall - James M. Galvin Joe Gersch - Demi Getchko Miek Gieben - John Gilmore Steve Goodbarn - James Gould Michael Graff - Chris Griffiths Olafur Gudmundsson - Gilles Guette Andreas Gustafsson Jun-ichiro Itojun Hagino Staffan Hagnell Phillip Hallam-Baker Ilja Hallberg - Bob Halley Cathy Handley - Wes Hardaker Ted Hardie - Ashley Heineman Jeremy Hitchcock - Bernie Hoeneisen Alfred Hoenes - Paul Hoffman Scott Hollenbeck - Russ Housley Geoff Houston - Walter Howard Bert Hubert - Greg Hudson Christian Huitema - Shumon Huque Johan Ihren - Stephen Jacob Jelte Jansen - Rodney Joffe Simon Josefsson - Daniel Kalchev Andris Kalnozols - Dan
    [Show full text]
  • Securing the Border Gateway Protocol by Stephen T
    September 2003 Volume 6, Number 3 A Quarterly Technical Publication for From The Editor Internet and Intranet Professionals In This Issue The task of adding security to Internet protocols and applications is a large and complex one. From a user’s point of view, the security- enhanced version of any given component should behave just like the From the Editor .......................1 old version, just be “better and more secure.” In some cases this is simple. Many of us now use a Secure Shell Protocol (SSH) client in place of Telnet, and shop online using the secure version of HTTP. But Securing BGP: S-BGP...............2 there is still work to be done to ensure that all of our protocols and associated applications provide security. In this issue we will look at Securing BGP: soBGP ............15 routing, specifically the Border Gateway Protocol (BGP) and efforts that are underway to provide security for this critical component of the Internet infrastructure. As is often the case with emerging Internet Virus Trends ..........................23 technologies, there exists more than one proposed solution for securing BGP. Two solutions, S-BGP and soBGP, are described by Steve Kent and Russ White, respectively. IPv6 Behind the Wall .............34 The Internet gets attacked by various forms of viruses and worms with Call for Papers .......................40 some regularity. Some of these attacks have been quite sophisticated and have caused a great deal of nuisance in recent months. The effects following the Sobig.F virus are still very much being felt as I write this. Fragments ..............................41 Tom Chen gives us an overview of the trends surrounding viruses and worms.
    [Show full text]
  • Update 6: Internet Society 20Th Anniversary and Global INET 2012
    Update 6: Internet Society 20th Anniversary and Global INET 2012 Presented is the latest update (edited from the previous “Update #6) on the Global INET 2012 and Internet Hall of Fame. Executive Summary By all accounts, Global INET was a great success. Bringing together a broad audience of industry pioneers; policy makers; technologists; business executives; global influencers; ISOC members, chapters and affiliated community; and Internet users, we hosted more than 600 attendees in Geneva, and saw more than 1,300 participate from remote locations. Global INET kicked off with our pre‐conference programs: Global Chapter Workshop, Collaborative Leadership Exchange and the Business Roundtable. These three programs brought key audiences to the event, and created a sense of energy and excitement that lasted through the week. Of key importance to the program was our outstanding line‐up of keynotes, including Dr. Leonard Kleinrock, Jimmy Wales, Francis Gurry, Mitchell Baker and Vint Cerf. The Roundtable discussions at Global INET featured critical topics, and included more than 70 leading experts engaged in active dialogue with both our in‐room and remote audiences. It was truly an opportunity to participate. The evening of Monday 23 April was an important night of celebration and recognition for the countless individuals and organizations that have dedicated time and effort to advancing the availability and vitality of the Internet. Featuring the Internet Society's 20th Anniversary Awards Gala and the induction ceremony for the Internet Hall of Fame, the importance of the evening cannot be understated. The media and press coverage we have already received is a testament to the historic nature of the Internet Hall of Fame.
    [Show full text]
  • The Amateur Computerist Gathers an Article Was Written and Published in the Some Documents from That Celebration
    The Amateur Comp u terist http://www.ais.org/~jrh/acn/ Summer 2008 ‘Across the Great Wall’ Volume 16 No. 2 2007. Participating were international Internet pio- Celebration neers, representatives of the Internet in China and The First Email Message from China to CSNET historians and journalists. From 1983 to 1987, two teams of scientists and engineers worked to overcome the technical, financial, and geographic obstacles to set up an email connection between China and the interna- tional CSNET. One team was centered around Werner Zorn at Karlsruhe University in the Federal Republic of Germany. The other team was under the general guidance of Wang Yuenfung at the In- stitute for Computer Applications (ICA) in the Peo- ple’s Republic of China. The project succeeded based on the scientific and technical skill and friendship, resourcefulness and dedication of the members of both teams. The first successful email message was sent on Sept 20, 1987 from Beijing to computer scien- tists in Germany, the U.S. and Ireland. The China- CSNET connection was granted official recogni- tion and approval on Nov 8 1987 when a letter (Composed 14 Sept 1987, sent 20 Sept 1987) signed by the Director of the U.S. National Science Foundation Division of Networking and Commu- A celebration of the 20th anniversary of the nications Research and Infrastructure Stephen first email message that was sent from China to the Wolff was forwarded to the head of the Chinese world via the international Computer Science Net- delegation, Yang Chuquan at an International work (CSNET) was held at the Hasso Plattner In- Networkshop in the U.S.
    [Show full text]
  • Visualization and Monitoring for the Identification and Analysis of DNS
    ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection Visualization and Monitoring for the Identification and Analysis of DNS Issues Christopher Amin, Massimo Candela, Daniel Karrenberg, Robert Kisteleki and Andreas Strikos Reseaux´ IP Europeens´ (RIPE) Network Coordination Centre Amsterdam, Netherlands Email: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—The user experience of an Internet service depends including the tools cited above, focus on data collected by a partly on the availability and speed of the Domain Name System specific server or through DNS resolutions from the resolver (DNS). DNS operators continually need to identify and solve point of view, DNSMON aims to constantly monitor all problems that can be located at the end user, a name server, or the name servers belonging to entire zones — considered somewhere in between. In this paper, we show how DNSMON, a strategic for the functioning of the whole Internet — through production service for measuring and comparing the availability performance measurements. It was initially conceived as a and responsiveness of key name servers, correlates and visualizes different types of measurements collected by RIPE Atlas vantage response to claims that root name servers performed poorly. points worldwide. DNSMON offers an interactive view, both Such claims were often based on measurements from one or historic and near real-time, at different levels of detail. It has — at most — a handful of vantage points and thus heavily successfully revealed and allowed analysis of many operational influenced by network performance on a small number of issues, including less obvious ones.
    [Show full text]
  • Vannevar Bush and JCR Licklider
    Spring 2007 On the Origin of the Net and the Netizen Volume 15 No. 2 attracted attention. People on every continent Netizens and WSIS: wanted access. In 1998, at the International Tele- Celebrating the Demand for communications Union (ITU) Plenipotentiary Universal Access Conference, Tunisia suggested the idea of a World Summit on the Information Society (WSIS). In 2002, recognizing the challenge to make access to the information society and the Internet universal, In the early 1990s, Michael Hauben and the United Nations General Assembly endorsed a Ronda Hauben began to document the history and proposal to hold such a summit. There were to be social impact of Usenet and the Internet. In 1994, two phases, the first in Geneva in 2003 and the they put their research online as the netizens second in Tunis in 2005. The papers gathered in netbook. Its title was “Netizens and the Wonderful this issue of the Amateur Computerist were World of the Net.” Then, in May 1997 there presented as a panel in the scientific side event appeared a print edition, Netizens: On the History conference, the Past, Present, and Future of and Impact of Usenet and the Internet,1 which is Research in the Information Society (PPF),2 held in celebrating its tenth anniversary in 2007. conjunction with the Tunis phase of the WSIS. Michael Hauben opens Chapter One of the The WSIS events with their culminating book Netizens with the greeting: meeting in Tunis in Nov 2005 demonstrated the Welcome to the 21st Century. You are a grassroots desire for the promise of the Internet Netizen (a Net Citizen), and you exist as a and of the netizen to be realized around the globe.
    [Show full text]
  • Encouraging Reproducibility in Scientific Research of the Internet
    Report from Dagstuhl Seminar 18412 Encouraging Reproducibility in Scientific Research of the Internet Edited by Vaibhav Bajpai1, Olivier Bonaventure2, Kimberly Claffy3, and Daniel Karrenberg4 1 TU München, DE, [email protected] 2 UC Louvain, BE, [email protected] 3 San Diego Supercomputer Center, US, [email protected] 4 RIPE NCC - Amsterdam, NL, [email protected] Abstract Reproducibility of research in Computer Science (CS) and in the field of networking in particular is a well-recognized problem. For several reasons, including the sensitive and/or proprietary nature of some Internet measurements, the networking research community pays limited attention to the of reproducibility of results, instead tending to accept papers that appear plausible. This article summarises a 2.5 day long Dagstuhl seminar on Encouraging Reproducibility in Scientific Research of the Internet held in October 2018. The seminar discussed challenges to improving reproducibility of scientific Internet research, and developed a set of recommendations that we as a community can undertake to initiate a cultural change toward reproducibility of our work. It brought together people both from academia and industry to set expectations and formulate concrete recommendations for reproducible research. This iteration of the seminar was scoped to computer networking research, although the outcomes are likely relevant for a broader audience from multiple interdisciplinary fields. Seminar October 7–10, 2018 – http://www.dagstuhl.de/18412 2012 ACM Subject Classification Networks Keywords and phrases Computer Networks, Reproducibility Digital Object Identifier 10.4230/DagRep.8.10.41 1 Executive Summary Vaibhav Bajpai Olivier Bonaventure Kimberly Claffy Daniel Karrenberg License Creative Commons BY 3.0 Unported license © Vaibhav Bajpai, Olivier Bonaventure, Kimberly Claffy, and Daniel Karrenberg Reproducibility in scientific research is a means to not only achieve trustworthiness of results, but it also lowers barriers to technology transition [40] and accelerates science by promoting incentives to data sharing.
    [Show full text]
  • Measuring DNS Over TLS from the Edge: Adoption, Reliability, and Response Times
    Measuring DNS over TLS from the Edge: Adoption, Reliability, and Response Times Trinh Viet Doan( ), Irina Tsareva, and Vaibhav Bajpai Technical University of Munich, Munich, Germany [email protected], [email protected], [email protected] Abstract. The Domain Name System (DNS) is a cornerstone of com- munication on the Internet. DNS over TLS (DoT) has been standardized in 2016 as an extension to the DNS protocol, however, its performance has not been extensively studied yet. In the first study that measures DoT from the edge, we leverage 3.2k RIPE Atlas probes deployed in home networks to assess the adoption, reliability, and response times of DoT in comparison with DNS over UDP/53 (Do53). Each probe issues 200 domain name lookups to 15 public resolvers, five of which support DoT, and to the probes’ local resolvers over a period of one week, re- sulting in 90M DNS measurements in total. We find that the support for DoT among open resolvers has increased by 23.1% after nine months in comparison with previous studies. However, we observe that DoT is still only supported by local resolvers for 0.4% of the RIPE Atlas probes. In terms of reliability, we find failure rates for DoT to be inflated by 0.4–32.2 percentage points when compared to Do53. While Do53 failure rates for most resolvers individually are consistent across continents, DoT failure rates have much higher variation. As for response times, we see high re- gional differences for DoT and find that nearly all DoT requests take at least 100 ms to return a response (in a large part due to connection and session establishment), showing an inflation in response times of more than 100 ms compared to Do53.
    [Show full text]
  • Signposts in Cyberspace: the Domain Name System and Internet Navigation
    Prepublication Copy—Subject to Further Editorial Correction Signposts in Cyberspace: The Domain Name System and Internet Navigation Committee on Internet Navigation and the Domain Name System: Technical Alternatives and Policy Implications Computer Science and Telecommunications Board Division on Engineering and Physical Sciences NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu Prepublication Copy—Subject to Further Editorial Correction THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, D.C. 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by the U.S. Department of Commerce and the National Science Foundation under Grant No. ANI-9909852 and by the National Research Council. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Commerce Department. International Standard Book Number Cover designed by Jennifer M. Bishop. Copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, D.C. 20055, (800) 624-6242 or (202) 334-3313 in the Washington metropolitan area. Internet, http://www.nap.edu Copyright 2005 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Prepublication Copy—Subject to Further Editorial Correction The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare.
    [Show full text]
  • Survey and Analysis of DNS Infrastructures Guillaume Bonnoron, Damien Crémilleux, Sravani Teja Bulusu, Xiaoyang Zhu, Guillaume Valadon
    Survey and analysis of DNS infrastructures Guillaume Bonnoron, Damien Crémilleux, Sravani Teja Bulusu, Xiaoyang Zhu, Guillaume Valadon To cite this version: Guillaume Bonnoron, Damien Crémilleux, Sravani Teja Bulusu, Xiaoyang Zhu, Guillaume Valadon. Survey and analysis of DNS infrastructures. [Research Report] CNRS. 2016. hal-01407640 HAL Id: hal-01407640 https://hal.archives-ouvertes.fr/hal-01407640 Submitted on 2 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Survey and analysis of DNS infrastructures Authors Guillaume Bonnoron Damien Cr´emilleux Sravani Teja Bulusu Xiaoyang Zhu Supervisor Guillaume Valadon 2016 Contents 1 Introduction 5 1.1 REDOCS . .5 1.2 Objective . .5 1.3 Outline . .6 2 Context 7 2.1 DNS protocol . .7 2.2 RIPE Atlas project . .7 3 Methodology 9 3.1 Probe side . .9 3.2 Server side . .9 3.3 Retrieving the results . 11 4 Analysis 13 4.1 Global view . 13 4.2 Probes . 14 4.2.1 Probes around the world . 14 4.2.2 Queries per probe . 14 4.3 Probe DNS resolvers . 16 4.4 DNS caches . 16 4.4.1 Query replication . 18 4.4.2 Several layers of caches .
    [Show full text]
  • Daniel Karrenberg Elected As Chair of ISOC's Board of Trustees
    www.ripe.net Information bulletin for the members of the RIPE NCC The RIPE NCC Member Update Daniel Karrenberg Elected as Chair of ISOC’s is intended for LIR Board of Trustees contacts. If you are not the right The RIPE NCC is pleased to announce that its person to receive Chief Scientist, Daniel Karrenberg, has been this update, please elected as the new Chair of the Internet Society’s forward it to the (ISOC’s) Board of Trustees. Daniel was elected appropriate colleague. on 1 July 2006 during ISOC’s Annual General Meeting (AGM) which was held in Marrakesh, Morocco. “The Internet Society has much to contribute to the continued success of the Internet,” said Daniel. “The diligent work of my predecessors, the Trustees and the staff has put the society in a very sound position. Building on this foundation, we will intensify our work in the areas of public policy and education. We will ensure that the © Merlin Daleman Internet Engineering Task Force (IETF) has the Daniel Karrenberg, Chief Scientist, RIPE NCC administrative support it needs to continue its exemplary standardisation work. We will continue was awarded the Jon Postel service award in to build a healthy network of chapters for local recognition of two decades of extraordinary activities close to the Internet users. All this will dedication to the development of networking help us to realise our motto ‘The Internet is for in Europe and around the world. A regular IETF Everyone’”. participant since 1992, Daniel has co-authored several RFCs. Daniel is a pioneer member of ISOC and has been actively involved with the development We hope you will join the RIPE NCC in of many of the society’s educational initiatives.
    [Show full text]