Anatomical Studies on the Vertebral Column, Sternum and Ribs of Bar Headed Goose (Anser Indicus)

Total Page:16

File Type:pdf, Size:1020Kb

Anatomical Studies on the Vertebral Column, Sternum and Ribs of Bar Headed Goose (Anser Indicus) Veterinary Practitioner Vol. 18 No. 2 December 2017 ANATOMICAL STUDIES ON THE VERTEBRAL COLUMN, STERNUM AND RIBS OF BAR HEADED GOOSE (ANSER INDICUS) P.J. Doley1, Shalini Suri 2 and K. Sarma3 Division of Veterinary Anatomy, Faculty of Veterinary Sciences and Animal Husbandry Sher-e-Kashmir University of Agricultural Sciences and Technology- Jammu, R.S.Pura-181 102, Jammu and Kashmir, India ABSTRACT Revised Received on: 22.05.2017 Accepted on: 28.08.2017 The vertebral column of bar headed goose consisted of 17 cervical vertebrae, 9 thoracic vertebrae, a synsacrum and 5 coccygeal vertebrae. The first two cervical vertebrae were atypical and the remaining 15 were typical showing a large anterior extremity. The bodies of the first 6 adjacent thoracic vertebrae and the free thoracic vertebrae articulated with each other by means of a saddle joint while the last three fused with the synsacrum. The anterior aspect of the bodies of the cervical and thoracic vertebrae showed a transversely concave and dorsoventrally convex articular facet whereas the caudal articular surface showed the opposite curva- ture. Cranio-caudally the synsacrum showed synsacrothoracic vertebrae with well developed dorsal spines and transverse pro- cesses, synsacrolumbar vertebrae, primary sacral vertebrae and synsacrocaudal vertebrae. The sternum of the bar head goose was in the form of quadrilateral bony plate. There were nine pairs of ribs in bar headed goose of which the first pair was floating. Key words: Bar headed goose, vertebral column, synsacrum, ribs and sternum Introduction showed an articular facet for the body of the axis. The bar headed goose (Anser indicus) is known locally The anterior surface of the body of the axis gave origin to a as Rajhans in India. The Bar Headed Geese are hardy birds cranially projecting odontoid process that articulated with the which have been spotted flying at altitudes of 10,000 metres. single occipital condyle. Similar findings were reported by Getty The bar-headed goose migrates high over the Himalayas to (2012) in fowl. The odontoid process was flat dorsally and spend winter on the Indian plains and breeds in Qinghai-Tibet convex and articular ventrally. The articular anterior extremity of Plateau in May and June. They are a passage visitor to the the odontoid process showed a dorsoventral ridge which region of Jammu and an estimated 3500-4000 birds visited articulates with the corresponding groove on the occipital Gharana wet land, R. S. Pura, Jammu during December to condyle. The body of axis below the dens showed a concave March end 2003-04. The present study was conducted on the articular area for the ventral arch of the atlas. The posterior bones of vertebral column, ribs and the sternum of three bar articular surface of the body was in the form of a laterally convex headed geese. but dorsoventrally concave articular area which articulated with the anterior aspect of the body of the succeeding vertebrae. Materials and Methods The dorsal spine of the axis was in the form of a crest while the This study was conducted on the bones from carcasses ventral spine was in the form of a prominent plate which was of three adult bar-headed geese which were brought to the posteriorly prominent and was notched on its posterior margin. division of Veterinary Pathology for postmortem examination The transverse process was in the form of a small caudally from the Gharana wet land conservation reserve situated some directed pointed plate. The roots of the transverse processes 35 kilometres away from Jammu city near the Indo-Pak border. were perforated with a large foramen transversarium. The Bones were collected and processed according to Raghavan medial wall of foramen transversarium showed a small (1964) and were subjected to various gross morphological foramen which joined with the like foramen of the opposite studies. side to form a transverse canal in the body of the vertebrae. Results and Discussion The anterior articular processes were in the form of two plates like anterior projections with an oval laterally facing convex Cervical vertebrae: articular facet while the posterior articular processes were in There were total 17 cervical vertebrae in bar headed goose the form of two oval concave facets on the posterior aspect of which was similar to the findings of Nickel et al. (1977) in the ventrolateral margin of neural arch. The intervertebral goose. All cervical vertebras apart from the atlas consisted of a foramens were formed by the union of the anterior and the vertebral body and a neural arch. The atlas of bar headed posterior pedicilar notches of the adjacent vertebrae. goose was a ring shaped atypical vertebrae showing an The anterior extremities of the remaining cervical vertebrae anterior articular facet for the single occipital condyle thereby were larger than their posterior extremities. The size of the allowing a wider degree of mobility to the atlanto-occipital cervical vertebras beyond the 3rd cervical gradually increased articulation as was reported earlier by Mclelland (1990) in from the cranial to caudal direction but the comparative length chicken. The posterior margin of the ventral arch of atlas of the bodies of these vertebrae gradually decreased in the 1Assistant Professor, Division of Veterinary Anatomy, College of Veterinary Science, CAU, Aizawl, 2 Professor & Head and 3Associate Professor and corresponding author, email: [email protected], Division of Vety. Anatomy, F.V.Sc. & A.H., SKUAST-J, R.S. Pura, Jammu-181102 (J&K) 189 Veterinary Practitioner Vol. 18 No. 2 December 2017 cranio-caudal direction while its width increased in the cranio- The anterior articular processes were over the transverse caudal direction. The anterior articular surfaces of all these process and showed medially directed flat oval shaped vertebrae were transversely concave and dorsoventral convex articular facets. The posterior articular processes were while the posterior articular surfaces showed the opposite on the posterior margin of the lamina of the neural arch curvature which was as reported by Nickel (1977) in facets were laterally facing. domesticated fowl. The anterior and the posterior margin of Synsacrum: The synsacrum of bar headed goose was the neural arch were notched. The anterior notch was very made up of synsacrothoracic vertebrae, synsacrolumbar prominent and so the anterior 1/4th of the body of the respective vertebrae, primary sacral vertebrae and synsacrocaudal vertebrae was not covered by the neural arch. The posterior vertebrae. The synsacrothoracic vertebra was formed by the notches were not prominent in the anterior series of these fusion of the last three thoracic vertebrae. It showed articular vertebrae but gradually become prominent posteriorly. The facets on either sides of the lateral margin of the transverse anterior and posterior notches of the pedicle of adjacent processes for the tubercle of the ribs and capitular facet on the vertebrae contributed in the formation of the intervertebral lateral aspect of the body for the head of the rib. The dorsal foramen. The dorsal spine was in the form of a prominent thin spines of these vertebrae were fused to form a longitudinal flat plate of bone seen only on the posterior half of the neural arch. piece of bone along its median line. It articulated with the ilium The ventral spine was inconstant and when present was either by its dorsal spines and transverse processes. The dorsal in the form of thin plate of bone or was in the form of a pair of spines of the synsacrolumbar vertebrae were similar to that of tubercle. The transverse processes were thin and were in the the synsacrothoracic vertebrae and fused with the ilium along form of caudally directed rods. The foramen transversarium the median axis of the vertebral column. Transverse process was wide and seen on the lateral aspect of the anterior halve were absent in posterior series of the synsacrolumbar vertebrae of the vertebral body perforating the roots of the transverse which led to the formation of a pair of deep renal fossa between processes. Both the lateral and the medial wall of foramen the medial surface of the ilium and the lateral surface of the transversarium were perforated by foramens. The two medial bodies of the synsacrolumbar vertebrae and the fused dorsal foramens communicated with each other and formed a spines. The renal fossa was for the pair of kidneys and this transverse canal below the vertebral canal. The anterior was according to the findings of Getty (2012) in fowl. The articular processes of the cervical vertebrae were in the form of anterior series of the primary sacral vertebrae had a divided a dorsomedially facing slightly convex ovoid structures on the transverse process showing a dorsal and a ventral division superior-medial aspect of the foramen transversium which separated by a large foramen while the posterior series of gradually became medial in position in the posterior series. these vertebrae and also the synsacrocaudal vertebrae The posterior articular processes were concave and present showed undivided transverse processes. The dorsal division on the ventral aspect of the posterior margin of the neural arch of the transverse processes of the anterior series and the which gradually became lateral on the posterior series. undivided transverse processes of the posterior series of the Thoracic vertebrae: There were 9 thoracic vertebrae primary sacral vertebrae and the transverse processes of the in bar headed goose of which the last three contributed synsacrocaudal vertebrae of each side were united together towards the formation of synsacrum. The remaining by a thin plate of bone which was perforated by a pair of medial thoracic vertebrae were free and did not contribute and lateral for the exit of spinal nerves. The primary sacral towards the formation of notarium which was in vertebrae and the synsacrocaudal vertebrae of bar headed accordance to the findings of Mclelland (1990) in duck goose fused with the ilium through their transverse processes and goose.
Recommended publications
  • Copyrighted Material
    C01 10/31/2017 11:23:53 Page 1 1 1 The Normal Anatomy of the Neck David Bainbridge Introduction component’ of the neck is a common site of pathology, and the diverse forms of neck The neck is a common derived characteristic disease reflect the sometimes complex and of land vertebrates, not shared by their aquatic conflicting regional variations and functional ancestors. In fish, the thoracic fin girdle, the constraints so evident in this region [2]. precursor of the scapula, coracoid and clavi- Unlike the abdomen and thorax, there is no cle, is frequently fused to the caudal aspect of coelomic cavity in the neck, yet its ventral part the skull. In contrast, as vertebrates emerged is taken up by a relatively small ‘visceral on to the dry land, the forelimb separated from compartment’, containing the larynx, trachea, the head and the intervening vertebrae speci- oesophagus and many important vessels, alised to form a relatively mobile region – the nerves and endocrine glands. However, I neck – to allow the head to be freely steered in will not review these structures, as they do many directions. not represent an extension of the equine ‘back’ With the exception of the tail, the neck in the same way that the more dorsal locomo- remains the most mobile region of the spinal tor region does. column in modern-day horses. It permits a wide range of sagittal plane flexion and exten- sion to allow alternating periods of grazing Cervical Vertebrae 3–7 and predator surveillance, as well as frontal plane flexion to allow the horizon to be scan- Almost all mammals, including the horse, ned, and rotational movement to allow possess seven cervical vertebrae, C1 to C7 nuisance insects to be flicked off.
    [Show full text]
  • Anatomy of the Spine
    12 Anatomy of the Spine Overview The spine is made of 33 individual bones stacked one on top of the other. Ligaments and muscles connect the bones together and keep them aligned. The spinal column provides the main support for your body, allowing you to stand upright, bend, and twist. Protected deep inside the bones, the spinal cord connects your body to the brain, allowing movement of your arms and legs. Strong muscles and bones, flexible tendons and ligaments, and sensitive nerves contribute to a healthy spine. Keeping your spine healthy is vital if you want to live an active life without back pain. Spinal curves When viewed from the side, an adult spine has a natural S-shaped curve. The neck (cervical) and low back (lumbar) regions have a slight concave curve, and the thoracic and sacral regions have a gentle convex curve (Fig. 1). The curves work like a coiled spring to absorb shock, maintain balance, and allow range of motion throughout the spinal column. The muscles and correct posture maintain the natural spinal curves. Good posture involves training your body to stand, walk, sit, and lie so that the least amount of strain is placed on the spine during movement or weight-bearing activities. Excess body weight, weak muscles, and other forces can pull at the spine’s alignment: • An abnormal curve of the lumbar spine is lordosis, also called sway back. • An abnormal curve of the thoracic spine is Figure 1. (left) The spine has three natural curves that form kyphosis, also called hunchback. an S-shape; strong muscles keep our spine in alignment.
    [Show full text]
  • Changes in L4/5 Intervertebral Foramen Bony Morphology With
    www.nature.com/scientificreports OPEN Changes in L4/5 Intervertebral Foramen Bony Morphology with Age Received: 7 September 2017 Shuaifeng Yan, Kai Wang, Yunfan Zhang, Song Guo, Yan Zhang & Jun Tan Accepted: 1 May 2018 The purpose of this study was to explore the morphological changes in L4/5 intervertebral foramen Published: xx xx xxxx with age using a digital method. The closed boundaries of the intervertebral foramen (IGES) in diferent sagittal slices (inside, middle and outside) were obtained from Mimics, and then imported to a custom- written program, which provided quantitative distance between the nerve root and the closed curves. The quantitative information of each age group was used to produce radar chart and line chart for morphological and statistical analyses. Overall, the intervertebral foramen changes mainly occurred in the inner part from middle age to old age. The foraminal height decreased with age in the inside sagittal slice, while no signifcant diference was found in the middle sagittal slice or the outside sagittal slice. The foraminal width showed no decrease in each age group or each sagittal plane. The present study described foraminal geometry of asymptomatic males in diferent sagittal slices with age. This information enhances the knowledge of anatomical changes in intervertebral foramen with age, which provides better understanding of the pathology of intervertebral foramen diseases. Low back pain (LBP) is a global health problem, causing enormous fnancial burden1,2. Te lifetime prevalence of LBP is reported to be as high as 84%3. Radiculopathy is a common cause of low back and leg pain4. In general, radiculopathy caused by foramen stenosis consists of 8–11% nerve root compression5, and shows an increasing trend6.
    [Show full text]
  • Required List of Bones and Markings
    REQUIRED LIST OF BONES AND MARKINGS Axial Skeleton Skull Cranial Bones (8) Frontal Bone (1) Supraorbital foramina Supraorbital ridges or margins Parietal Bones (2) Temporal Bones (2) External auditory meatus Mastoid process Styloid process Zygomatic process Mandibular fossa Foramen lacerum Carotid foramen Jugular foramen Stylomastoid foramen Internal auditory meatus Occipital Bone (1) Foramen magnum Occipital condyles Ethmoid Bone (1) Cribriform plate Olfactory foramina in cribriform plate Crista galli Perpendicular plate (forms superior part of nasal septum) Middle nasal concha Superior nasal concha Sphenoid Bone (1) Foramen ovale Foramen rotundum Sella turcica Greater wing Lesser wing Optic foramen Inferior orbital fissure Superior orbital fissure Pterygoid processes Skull (cont’d) Facial Bones (14) Lacrimal Bones (2) Lacrimal fossa Nasal Bones (2) Inferior Nasal Conchae (2) Vomer (1) (forms inferior portion of nasal septum) Zygomatic Bones (2) Temporal process (forms zygomatic arch with zygomatic process of temporal bone) Maxillae (2) Alveoli Palatine process (forms anterior part of hard palate) Palatine Bones (2) (form posterior part of hard palate) Mandible (1) Alveoli Body Mental foramen Ramus Condylar process (mandibular condyle) Coronoid process Miscellaneous (Skull) Paranasal sinuses are located in the ethmoid bone, sphenoid bone, frontal bone, and maxillae Zygomatic arch (“cheekbone”) is composed of the zygomatic process of the temporal bone and the temporal process of the zygomatic bone 2 pairs of nasal conchae (superior and middle) are part of the ethmoid bone. 1 pair (inferior) are separate facial bones. All the scroll-like conchae project into the lateral walls of the nasal cavity. Hard palate (“roof of mouth”) is composed of 2 palatine processes of the maxillae and the 2 palatine bones (total of 4 fused bones).
    [Show full text]
  • The Functional Morphology of the Superior Articular Processes of the Lumbar Vertebrae
    J. Anat. (1985), 143, pp. 181-187 181 With 7 figures Printed ,n Great Britain The functional morphology of the superior articular processes of the lumbar vertebrae REINHARD PUTZ Department 0/ Anatomy, University 0/ Freiburg, Albertstrasse 17, D-7800 Freiburg, W. Germany (Accepted 27 March 1985) INTRODUCTION A c1ear description of the functional significance of the superior articular processes of the lumbar vertebrae has existed for many years. According to Fick (1911) the articular processes limit rotation, or act as 'guide rails' for movement. These suggestions are based on a consideration of the movements of individual segments, and are mostly the result of observing the form of isolated macerated vertebrae. The part played by the ligaments and deep muscles of the column has apparently been largely or completely ignored. A great deal of research has been carried out on the functional morphology of the bodies and neural arches of the vertebrae, and a representative collection of titles can be found in the artic1e by Schlüter (1965). This author, however, exc1uded the articular processes from his work on account of their small size, and because their uncertain relationship with the muscles and ligaments had been insufficiently investi­ gated for bis purpose. All the same, there exists a number of predominantly general and mostly purely theoretical accounts of the relationship between structure and function in the articular processes (Lutz, 1967; Pfeil, 1971; Putz, 1976, 1977, 1981). Very recently (Kummer, 1981, 1982) has presented an account, albeit principally static, of the function of the vertebral joints, and the team led by Rille & Schulitz (1983) has at last produced valuable information on the distribution ofpressure over the joint surfaces during flexion of the body in the sagittal plane.
    [Show full text]
  • Chapter 02: Netter's Clinical Anatomy, 2Nd Edition
    Hansen: Netter's Clinical Anatomy, 2nd Edition - with Online Access 2 BACK 1. INTRODUCTION 4. MUSCLES OF THE BACK REVIEW QUESTIONS 2. SURFACE ANATOMY 5. SPINAL CORD 3. VERTEBRAL COLUMN 6. EMBRYOLOGY FINAL 1. INTRODUCTION ELSEVIERl VertebraeNOT prominens: the spinous process of the C7- vertebra, usually the most prominent The back forms the axis (central line) of the human process in the midline at the posterior base of body and consists of the vertebral column, spinal cord, the neck supporting muscles, and associated tissues (skin, OFcon- l Scapula: part of the pectoral girdle that sup- nective tissues, vasculature, and nerves). A hallmark of ports the upper limb; note its spine, inferior human anatomy is the concept of “segmentation,” and angle, and medial border the back is a prime example. Segmentation and bilat l Iliac crests: felt best when you place your eral symmetry of the back will be obvious as you hands “on your hips”; an imaginary horizontal study the vertebral column, the distribution of the line connecting the crests passes through the spinal nerves, the muscles of th back, and its vascular spinous process of the L4 vertebra and the supply. intervertebral disc of L4-L5, a useful landmark Functionally, the back is involved in three primary for a lumbar puncture or epidural block tasks: l Posterior superior iliac spines: an imaginary CONTENThorizontal line connecting these two points l Support: the vertebral column forms the axis of passes through the spinous process of S2 (second the body and is critical for our upright posture sacral segment) (standing or si ting), as a support for our head, as an PROPERTYattachment point and brace for move- 3.
    [Show full text]
  • Skeleton of the Spine and the Thorax
    SKELETON OF THE SPINE AND THE THORAX Pages 37- 42 and 54 - 57 Skeleton of the spine Vertebral Column . forms the basic structure of the trunk . consists of 33-34 vertebrae and intervertebral discs . 7 cervical, 12 thoracic, 5 lumbar = true vertebrae . sacrum and coccyx fused = false vertebrae Vertebra . all vertebrae have certain features in common (vertebral body, vertebral arch and seven processes) and regional differences . vertebral body . vetrebral arch pedicle lamina spinous process transverse process articular processes . vertebral foramen . vetrebral notch Cervical vertebrae . transverse foramen (foramen transversarium) in the transverse process . transverse processes of cervical vertebrae end laterally in two projection for attachment of cervical muscles anterior tubercle and posterior tubercle . bifid spinous process . C6 - tuberculum caroticum . C7 - vertebra prominens Atlas C1 . a ring-shaped bone . has neither a boby nor a spinous process . lateral masses . anterior and posterior arches . anterior and posterior tubercles . superior and inferior articular surfaces . articular facet for dens Axis C2 . serves as the pivot about which the rotation of the head occurs . odontoid process = dens . anterior articular facet Thoracic vertebrae . spinous process is long and running posteroinferiorly . superior costal facet . inferior costal facet . transverse process has an articulating facet for the tubercle of a rib = costal facet . the body is heart-shaped Lumbar vertebrae . massive bodies . accessory process - on the posterior surface of the base of each transverse process . mammilary process - on the posterior surface of the superior articular process . costal process Sacrum solid triangular bone . base . wings (alae) . apex . dorsal surface median crest intermediate crest lateral crest posterior sacral foramina superior art. processes .
    [Show full text]
  • Thoracolumbar Spine
    Color Code Thoracolumbar Spine Important Doctors Notes By Biochemistry team Editing File Notes/Extra explanation Objectives At the end of the lecture, students should be able to: Distinguish the thoracic and lumbar vertebrae from each other and from vertebrae of the cervical region Describe the characteristic features of a thoracic and a lumbar vertebra. Compare the movements occurring in thoracic and lumbar regions. Describe the joints between the vertebral bodies and the vertebral arches. List and identify the ligaments of the intervertebral joints. Introduction to Vertebrae There are approximately 33 vertebrae which are subdivided into 5 groups based on morphology and location: cervical, thoracic, lumbar, sacral, and coccygeal. Typical Vertebra All typical vertebrae consist of a vertebral body and a posterior vertebral arch. o Vertebral body: • weight-bearing part. The size increases inferiorly as the amount of weight supported increases. o Vertebral arch: • Extending from the arch are a number of processes for muscle attachment Vertebral and articulation with adjacent bones. foramen • It consists of: 1. Two pedicles (towards the body) 2. Two lamina (towards the spine) 3. Spinous process 4. Transverse process 5. Superior and inferior articular processes. (for articulation with adjacent vertebra) The vertebral foramen is the hole in the middle of the vertebra. Collectively they form the vertebral canal through which the spinal cord passes. Normal Curvature Of The Human’s Vertebral Column The vertebral column is Curves of vertebral not straight, it only looks column can be divided straight from the into: posterior and anterior • Primary curves: view. Thoracic & sacral. It is curved as seen from the lateral views.
    [Show full text]
  • Cervical Vertebrae 1 Cervical Vertebrae
    Cervical vertebrae 1 Cervical vertebrae Cervical vertebrae or Cervilar Position of human cervical vertebrae (shown in red). It consists of 7 bones, from top to bottom, C1, C2, C3, C4, C5, C6 and C7. A human cervical vertebra Latin Vertebrae cervicales [1] Gray's p.97 [2] MeSH Cervical+vertebrae [3] TA A02.2.02.001 [4] FMA FMA:72063 In vertebrates, cervical vertebrae (singular: vertebra) are those vertebrae immediately inferior to the skull. Thoracic vertebrae in all mammalian species are defined as those vertebrae that also carry a pair of ribs, and lie caudal to the cervical vertebrae. Further caudally follow the lumbar vertebrae, which also belong to the trunk, but do not carry ribs. In reptiles, all trunk vertebrae carry ribs and are called dorsal vertebrae. In many species, though not in mammals, the cervical vertebrae bear ribs. In many other groups, such as lizards and saurischian dinosaurs, the cervical ribs are large; in birds, they are small and completely fused to the vertebrae. The transverse processes of mammals are homologous to the cervical ribs of other amniotes. Cervical vertebrae 2 In humans, cervical vertebrae are the smallest of the true vertebrae, and can be readily distinguished from those of the thoracic or lumbar regions by the presence of a foramen (hole) in each transverse process, through which passes the vertebral artery. The remainder of this article focuses upon human anatomy. Structure By convention, the cervical vertebrae are numbered, with the first one (C1) located closest to the skull and higher numbered vertebrae (C2-C7) proceeding away from the skull and down the spine.
    [Show full text]
  • Bones of the Trunk
    BONES OF THE TRUNK Andrea Heinzlmann Veterinary University Department of Anatomy and Histology 16th September 2019 VERTEBRAL COLUMN (COLUMNA VERTEBRALIS) • the vertebral column composed of the vertebrae • the vertebrae form a horizontal chain https://hu.pinterest.com/pin/159877855502035893/ VERTEBRAL COLUMN (COLUMNA VERTEBRALIS) along the vertebral column three major curvatures are recognized: 1. the DORSAL CONVEX CURVATURE – between the head and the neck 2. the DORSAL CONCAVE CURVATURE – between the neck and the chest 3. the DORSAL CONVEX CURVATURE – between the thorax and the lumbar region - in carnivores (Ca) there is an additional DORSAL CONVEXITY in the sacral region https://hu.pinterest.com/pin/159877855502035893/ VERTEBRAL COLUMN (COLUMNA VERTEBRALIS) - corresponding to the regions of the body, we distinguish: 1. CERVICAL VERTEBRAE 2. THORACIC VERTEBRAE 3. LUMBAR VERTEBRAE 4. SACRAL VERTEBRAE 5. CAUDAL (COCCYGEAL) VERTEBRAE https://www.ufaw.org.uk/dogs/french-bulldog-hemivertebrae https://rogueshock.com/know-your-horse-in-9-ways/5/ BUILD OF THE VERTEBRAE each vertebrae presents: 1. BODY (CORPUS VERTEBRAE) 2. ARCH (ARCUS VERTEBRAE) 3. PROCESSES corpus Vertebra thoracica (Th13) , Ca. THE VERTEBRAL BODY (CORPUS VERTEBRAE) - the ventral portion of the vertebra ITS PARTS: 1. EXTREMITAS CRANIALIS (seu CAPUT VERTEBRAE) – convex 2. EXTREMITAS CAUDALIS (seu FOSSA VERTEBRAE) - concave Th13, Ca. THE VERTEBRAL BODY (CORPUS VERTEBRAE) 3. VENTRAL SURFACE of the body has a: - ventral crest (CRISTA VENTRALIS) 4. DORSAL SURFACE of the body carries : - the vertebral arch (ARCUS VERTEBRAE) Th13, Ca., lateral aspect Arcus vertebrae corpus Vertebra thoracica (Th13) , Ca., caudal aspect THE VERTEBRAL BODY (CORPUS VERTEBRAE) 6. VERTEBRAL ARCH (ARCUS VERTEBRAE) compraisis: a) a ventral PEDICULUS ARCUS VERTEBRAE b) a dorsal LAMINA ARCUS VERTEBRAE C7, Ca.
    [Show full text]
  • Radiographic Anatomy of the Intervertebral Cervical and Lumbar Foramina 691
    Diagnostic and Interventional Imaging (2012) 93, 690—697 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector CONTINUING EDUCATION PROGRAM: FOCUS. Radiographic anatomy of the intervertebral cervical and lumbar foramina (vessels and variants) ∗ X. Demondion , G. Lefebvre, O. Fisch, L. Vandenbussche, J. Cepparo, V. Balbi Service de radiologie musculosquelettique, CCIAL, laboratoire d’anatomie, faculté de médecine de Lille, hôpital Roger-Salengro, CHRU de Lille, rue Émile-Laine, 59037 Lille, France KEYWORDS Abstract The intervertebral foramen is an orifice located between any two adjacent verte- Spine; brae that allows communication between the spinal (or vertebral) canal and the extraspinal Spinal cord; region. Although the intervertebral foramina serve as the path traveled by spinal nerve roots, Vessels vascular structures, including some that play a role in vascularization of the spinal cord, take the same path. Knowledge of this vascularization and of the origin of the arteries feeding it is essential to all radiologists performing interventional procedures. The objective of this review is to survey the anatomy of the intervertebral foramina in the cervical and lumbar spines and of spinal cord vascularization. © 2012 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved. The intervertebral foramen is an orifice located between any two adjacent vertebrae that allows communication between the spinal (or vertebral) canal and the extraspinal region. Although the intervertebral foramina serve as the path traveled by spinal nerve roots, vascular structures, including some that play a role in vascularization of the spinal cord, take the same path. Knowledge of this vascularization and of the source of the arteries feeding the spinal cord is therefore essential to all radiologists performing interventional procedures in view of the iatrogenic risks they present.
    [Show full text]
  • Spinal Nerve Position and Morphometric Analysis with Silicon Molds in the Cadaveric Lumbar Intervertebral Foramen
    대한체질인류학회지 제 31 권 제 4 호 Korean J Phys Anthropol Vol. 31, No. 4 (2018) pp. 151~158 https://doi.org/10.11637/kjpa.2018.31.4.151 Original Article Spinal Nerve Position and Morphometric Analysis with Silicon Molds in the Cadaveric Lumbar Intervertebral Foramen Soonwook Kwon Department of Anatomy, School of Medicine, Catholic University of Daegu (Received 4 December 2018, revised 14 December 2018, accepted 17 December 2018) Abstract : The intervertebral foramen is formed by two adjacent vertebrae and an intervertebral disc. Previous studies examining the foramen have been performed using various methods. The author obtained characteristics of the intervertebral foramen based on silicon mold. The author used 18 cadavers and dissected the lumbar intervertebral foramen. First, positional levels of the spinal nerve in the intervertebral foramen were measured. Second, after being removed all tissues covering the intervertebral, bony foramen was filled with melted silicon to mold the cross section. Subsequently, the solidified silicon mold was removed and stamped on a paper. The paper was scanned and analyzed area, perimeter, height and width of the intervertebral foramen on a computer. Area (average, 9.43 mm2) and perimeter (average, 48.02 mm) did not show any statistical significant pattern for any lumbar vertebral levels. However, the height and width significantly differed at the fifth lumbar vertebra, which had the shortest height (the fifth, 13.00 mm; average, 15.78 mm) and longest width (the fifth, 8.61 mm; average, 7.87 mm), although there were similar patterns in case of area and perimeter of the first to fourth lumbar vertebra.
    [Show full text]