Black Holes Are Quantum Complete
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5-Dimensional Space-Periodic Solutions of the Static Vacuum Einstein Equations
5-DIMENSIONAL SPACE-PERIODIC SOLUTIONS OF THE STATIC VACUUM EINSTEIN EQUATIONS MARCUS KHURI, GILBERT WEINSTEIN, AND SUMIO YAMADA Abstract. An affirmative answer is given to a conjecture of Myers concerning the existence of 5-dimensional regular static vacuum solutions that balance an infinite number of black holes, which have Kasner asymp- totics. A variety of examples are constructed, having different combinations of ring S1 × S2 and sphere S3 cross-sectional horizon topologies. Furthermore, we show the existence of 5-dimensional vacuum solitons with Kasner asymptotics. These are regular static space-periodic vacuum spacetimes devoid of black holes. Consequently, we also obtain new examples of complete Riemannian manifolds of nonnegative Ricci cur- vature in dimension 4, and zero Ricci curvature in dimension 5, having arbitrarily large as well as infinite second Betti number. 1. Introduction The Majumdar-Papapetrou solutions [14, 16] of the 4D Einstein-Maxwell equations show that gravi- tational attraction and electro-magnetic repulsion may be balanced in order to support multiple black holes in static equilibrium. In [15], Myers generalized these solutions to higher dimensions, and also showed that such balancing is also possible for vacuum black holes in 4 dimensions if an infinite number are aligned properly in a periodic fashion along an axis of symmetry; these 4-dimensional solutions were later rediscovered by Korotkin and Nicolai in [11]. Although the Myers-Korotkin-Nicolai solutions are not asymptotically flat, but rather asymptotically Kasner, they play an integral part in an extended version of static black hole uniqueness given by Peraza and Reiris [17]. It was conjectured in [15] that these vac- uum solutions could be generalized to higher dimensions, possibly with black holes of nontrivial topology. -
Supergravity Pietro Giuseppe Frè Dipartimento Di Fisica Teorica University of Torino Torino, Italy
Gravity, a Geometrical Course Pietro Giuseppe Frè Gravity, a Geometrical Course Volume 2: Black Holes, Cosmology and Introduction to Supergravity Pietro Giuseppe Frè Dipartimento di Fisica Teorica University of Torino Torino, Italy Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-94-007-5442-3 ISBN 978-94-007-5443-0 (eBook) DOI 10.1007/978-94-007-5443-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012950601 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
The Physics of Star Trek the Physics of Star Trek
The Physics of Star Trek The Physics of Star Trek The Physics of Star Trek The Physics of Star Trek FOREWORD Stephen Hawking I was very pleased that Data decided to call Newton, Einstein, and me for a game of poker aboard the Enterprise. Here was my chance to turn the tables on the two great men of gravity, particularly Einstein, who didn't believe in chance or in God playing dice. Unfortunately, I never collected my winnings because the game had to be abandoned on account of a red alert. I contacted Paramount studios afterward to cash in my chips, but they didn't know the exchange rate. Science fiction like Star Trek is not only good fun but it also serves a serious purpose, that of expanding the human imagination. We may not yet be able to boldly go where no man (or woman) has gone before, but at least we can do it in the mind. We can explore how the human spirit might respond to future developments in science and we can speculate on what those developments might be. There is a two-way trade between science fiction and science. Science fiction suggests ideas that scientists incorporate into their theories, but sometimes science turns up notions that are stranger than any science fiction. Black holes are an example, greatly assisted by the inspired name that the physicist John Archibald Wheeler gave them. Had they continued with their original names of “frozen stars” or “gravitationally completely collapsed objects,” there wouldn't have been half so much written about them. -
Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities . -
A Domain Wall Solution by Perturbation of the Kasner Spacetime
A Domain Wall Solution by Perturbation of the Kasner Spacetime George Kotsopoulos 1906-373 Front St. West, Toronto, ON M5V 3R7 [email protected] and Charles C. Dyer Dept. of Physical and Environmental Sciences, University of Toronto Scarborough, and Dept. of Astronomy and Astrophysics, University of Toronto, Toronto, Canada [email protected] January 24, 2012 Received ; accepted arXiv:1201.5362v1 [gr-qc] 25 Jan 2012 –2– Abstract Plane symmetric perturbations are applied to an axially symmetric Kasner spacetime which leads to no momentum flow orthogonal to the planes of symme- try. This flow appears laminar and the structure can be interpreted as a domain wall. We further extend consideration to the class of Bianchi Type I spacetimes and obtain corresponding results. Subject headings: general relativity, Kasner metric, Bianchi Type I, domain wall, perturbation –3– 1. Finding New Solutions There are three principal exact solutions to the Einstein Field Equations (EFE) that are most relevant for the description of astrophysical phenomena. They are the Schwarzschild (internal and external), Kerr and Friedman-LeMaître-Robertson-Walker (FLRW) models. These solutions are all highly idealized and involve the introduction of simplifying assumptions such as symmetry. The technique we use which has led to a solution of the EFE involves the perturbation of an already symmetric solution (Wilson and Dyer 2007). Whereas standard perturbation techniques involve specifying the forms of the energy-momentum tensor to determine the form of the metric, we begin by defining a new metric with an applied perturbation: gab =g ˜ab + hab (1) where g˜ab is a known symmetric metric and hab is the applied perturbation. -
Analog Geometry in an Expanding Fluid from Ads/CFT Perspective
Physics Letters B 743 (2015) 340–346 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Analog geometry in an expanding fluid from AdS/CFT perspective ∗ Neven Bilic´ , Silvije Domazet, Dijana Tolic´ Division of Theoretical Physics, Rudjer Boškovi´c Institute, P.O. Box 180, 10001 Zagreb, Croatia a r t i c l e i n f o a b s t r a c t Article history: The dynamics of an expanding hadron fluid at temperatures below the chiral transition is studied in Received 16 February 2015 the framework of AdS/CFT correspondence. We establish a correspondence between the asymptotic AdS Accepted 5 March 2015 geometry in the 4 + 1dimensional bulk with the analog spacetime geometry on its 3 + 1dimensional Available online 9 March 2015 boundary with the background fluid undergoing a spherical Bjorken type expansion. The analog metric Editor: L. Alvarez-Gaumé tensor on the boundary depends locally on the soft pion dispersion relation and the four-velocity of Keywords: the fluid. The AdS/CFT correspondence provides a relation between the pion velocity and the critical Analogue gravity temperature of the chiral phase transition. AdS/CFT correspondence © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 3 Chiral phase transition (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . Linear sigma model Bjorken expansion 1. Introduction found in the QCD vacuum and its non-vanishing value is a man- ifestation of chiral symmetry breaking [8]. The chiral symmetry The original formulation of gauge-gravity duality in the form of is restored at finite temperature through a chiral phase transition the so called AdS/CFT correspondence establishes an equivalence of which is believed to be of first or second order depending on the a four dimensional N = 4 supersymmetric Yang–Mills theory and underlying global symmetry [9]. -
Particle Production in the Central Rapidity Region
LA-UR-92-3856 November, 1992 Particle production in the central rapidity region F. Cooper,1 J. M. Eisenberg,2 Y. Kluger,1;2 E. Mottola,1 and B. Svetitsky2 1Theoretical Division and Center for Nonlinear Studies Los Alamos National Laboratory Los Alamos, New Mexico 87545 USA 2School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, 69978 Tel Aviv, Israel ABSTRACT We study pair production from a strong electric ¯eld in boost- invariant coordinates as a simple model for the central rapidity region of a heavy-ion collision. We derive and solve the renormal- ized equations for the time evolution of the mean electric ¯eld and current of the produced particles, when the ¯eld is taken to be a function only of the fluid proper time ¿ = pt2 z2. We ¯nd that a relativistic transport theory with a Schwinger¡source term mod- i¯ed to take Pauli blocking (or Bose enhancement) into account gives a good description of the numerical solution to the ¯eld equations. We also compute the renormalized energy-momentum tensor of the produced particles and compare the e®ective pres- sure, energy and entropy density to that expected from hydrody- namic models of energy and momentum flow of the plasma. 1 Introduction A popular theoretical picture of high-energy heavy-ion collisions begins with the creation of a flux tube containing a strong color electric ¯eld [1]. The ¯eld energy is converted into particles as qq¹ pairs and gluons are created by the Schwinger tunneling mechanism [2, 3, 4]. The transition from this quantum tunneling stage to a later hydrodynamic stage has previously been described phenomenologically using a kinetic theory model in which a rel- ativistic Boltzmann equation is coupled to a simple Schwinger source term [5, 6, 7, 8]. -
On Limiting Curvature in Mimetic Gravity
On limiting curvature in mimetic gravity Tobias Benjamin Russ München 2021 On limiting curvature in mimetic gravity Tobias Benjamin Russ Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Tobias Benjamin Russ aus Güssing, Österreich München, den 11. Mai 2021 Erstgutachter: Prof. Dr. Viatcheslav Mukhanov, LMU München Zweitgutachter: Prof. Dr. Paul Steinhardt, Princeton University Tag der mündlichen Prüfung: 8. Juli 2021 Contents Zusammenfassung . vii Abstract . ix Acknowledgements . xi Publications . xiii Summary 1 0.1 Introduction . .1 0.2 The theory . .7 0.3 Results & Conclusions . 12 0.3.1 Big Bang replaced by initial dS . 12 0.3.2 Anisotropic singularity resolution requires asymptotic freedom . 17 0.3.3 Modified black hole with stable remnant . 20 0.3.4 Higher spatial derivatives avert gradient instability . 26 0.4 Outlook . 30 1 Asymptotically Free Mimetic Gravity 31 1.1 Introduction . 32 1.2 Action and equations of motion . 33 1.3 The synchronous coordinate system . 33 1.4 Asymptotic freedom and the fate of a collapsing universe . 35 1.5 Quantum fluctuations . 39 1.6 Conclusions . 40 2 Mimetic Hořava Gravity 43 3 Black Hole Remnants 49 3.1 Introduction . 50 3.2 The Lemaître coordinates . 50 3.3 Modified Mimetic Gravity . 51 3.4 Asymptotic Freedom at Limiting Curvature . 52 3.5 Exact Solution . 53 3.6 Black hole thermodynamics . 55 3.7 Conclusions . 56 vi Contents 4 Non-flat Universes and Black Holes in A.F.M.G. 57 4.1 The Theory . 58 4.1.1 Introduction . 58 4.1.2 Action and equations of motion . -
Symbols 1-Form, 10 4-Acceleration, 184 4-Force, 115 4-Momentum, 116
Index Symbols B 1-form, 10 Betti number, 589 4-acceleration, 184 Bianchi type-I models, 448 4-force, 115 Bianchi’s differential identities, 60 4-momentum, 116 complex valued, 532–533 total, 122 consequences of in Newman-Penrose 4-velocity, 114 formalism, 549–551 first contracted, 63 second contracted, 63 A bicharacteristic curves, 620 acceleration big crunch, 441 4-acceleration, 184 big-bang cosmological model, 438, 449 Newtonian, 74 Birkhoff’s theorem, 271 action function or functional bivector space, 486 (see also Lagrangian), 594, 598 black hole, 364–433 ADM action, 606 Bondi-Metzner-Sachs group, 240 affine parameter, 77, 79 boost, 110 alternating operation, antisymmetriza- Born-Infeld (or tachyonic) scalar field, tion, 27 467–471 angle field, 44 Boyer-Lindquist coordinate chart, 334, anisotropic fluid, 218–220, 276 399 collapse, 424–431 Brinkman-Robinson-Trautman met- ric, 514 anti-de Sitter space-time, 195, 644, Buchdahl inequality, 262 663–664 bugle, 69 anti-self-dual, 671 antisymmetric oriented tensor, 49 C antisymmetric tensor, 28 canonical energy-momentum-stress ten- antisymmetrization, 27 sor, 119 arc length parameter, 81 canonical or normal forms, 510 arc separation function, 85 Cartesian chart, 44, 68 arc separation parameter, 77 Casimir effect, 638 Arnowitt-Deser-Misner action integral, Cauchy horizon, 403, 416 606 Cauchy problem, 207 atlas, 3 Cauchy-Kowalewski theorem, 207 complete, 3 causal cone, 108 maximal, 3 causal space-time, 663 698 Index 699 causality violation, 663 contravariant index, 51 characteristic hypersurface, 623 contravariant -
Arxiv:2008.13699V3 [Hep-Th] 18 Mar 2021 1 Rsn Drs:Dprmn Fpyis Ea Ae Olg,S College, Patel Vesaj Physics, of Department Address: Present Xadn Udi H Aetm Regime
Anisotropic expansion, second order hydrodynamics and holographic dual Priyanka Priyadarshini Pruseth 1 and Swapna Mahapatra Department of Physics, Utkal University, Bhubaneswar 751004, India. [email protected] , [email protected] Abstract We consider Kasner space-time describing anisotropic three dimensional expan- sion of RHIC and LHC fireball and study the generalization of Bjorken’s one dimensional expansion by taking into account second order relativistic viscous hydrodynamics. Using time dependent AdS/CFT correspondence, we study the late time behaviour of the Bjorken flow. From the conditions of conformal invariance and energy-momentum conservation, we obtain the explicit expres- sion for the energy density as a function of proper time in terms of Kasner parameters. The proper time dependence of the temperature and entropy have also been obtained in terms of Kasner parameters. We consider Eddington- Finkelstein type coordinates and discuss the gravity dual of the anisotropically expanding fluid in the late time regime. arXiv:2008.13699v3 [hep-th] 18 Mar 2021 1Present address: Department of Physics, Vesaj Patel College, Sundargarh, India 1 Introduction AdS/CFT correspondence has provided a very important tool for studying the strongly coupled dynamics in a class of superconformal field theories, in particular, = 4 super N Yang-Mills theory and the corresponding gravity dual description in AdS space-time [1, 2]. One of the fundamental question in the field of high energy physics is to understand the properties of matter at extreme density and temperature in the first few microseconds after the big bang. Such a state of matter is known as Quark-Gluon-Plasma (QGP) state where the quarks and the gluons are in deconfined state. -
"Behaviour of the Gravitational Field Around the Initial Singularity"
"BEHAVIOUR OF THE GRAVITATIONAL FIELD AROUND THE INITIAL SINGULARITY" Gerson Francisco. t ? õ INSTIT0T0 01 flSICA TEÓRICA "BEHAVIOUR OF THE GRAVITATIONAL FIELD AROUND THE INITIAL SINGULARITY" Gerson Francisco Instituto de Física Teórica Rua Pamplona, 145 01405 - São Paulo-SP BRASIL. Abstract The ultralocal representation of the canonical^ ly quantized gravitational field is used to obtain the evolution of coherent states in the immediate neighborhood of the singulari- ty. It is shown that smearing functions play the role of classical fields since they correspond to cosrnological solutions around the singularity. A special class of ultralocal coherent states is shown to contain the essential aspects of the dynamics of the system when we choose a simple representation for the field operators of the theory. When the ultralocality condition is broken a conjec- ture will be made about the quantum evolution of coherent states in the classical limit. i-í . Intiüd^': I ion Cosmologica.1 solutions to Einstein equations a-o'jnd the Initial singularity have been thouroughly investigated _y b^Lin^kii, KhaiaLnikov and Lifshitz |1—3| (or BKL t\u short). [n fiLs connection ue also mention the u»ork of Eardley et al. |4| inn thu Hami ltoninr' tiaatment of Liang |5|. The main point of theso st'ciRs is ttip far:t thac a large class of solutions to Einstein rtn,iaf,ions \n r.ne asymptotic region close to the singularity exhi- ;•>: ' :. kifnj cr ?\.>antaneously decoupled dynamics in the sense that field ewoJution at a given initial point on a Cauchy hypersur- 5^ is totally independent from what occurs in its neighbor- hood. -
STARFLEET COMMAND's SEVENTH FLEET Advanced Technical
STARFLEET COMMAND’S SEVENTH FLEET U.S.S. White Buffalo - NCC 80116 Advanced Technical Specifications for the Luna-Class Production Vehicle U.S.S. White STARFLEET COMMAND’S SEVENTH FLEET Buffalo NCC 80116 Quantum Singularity Core + Slipstream Drive Information Packet Revised: 07 - 2018 | U.S.S. White Buffalo - N.C.C. 80116 (Revised: 07-2018) STARFLEET COMMAND’S SEVENTH FLEET U.S.S. White Buffalo - NCC 80116 Quantum Singularity Core + Slipstream Drive Information Packet Quantum Singularity Core Intro: Since I started working on the White Buffalo’s QSC, I discovered that everything I knew about Quantum Singularities and how they could be manipulated to create enough power to not only sustain a warp reaction, but that they could also power a vessel as large as, or larger than, 1,041.65 Meters Long, 772.43 Meters Width, 285.47 Meters Tall, and with a Mass of 4,320,000 Metric Tons. With this kind of power a Federation Starship would be able to maintain a more stable warp reaction, power all of its systems at one time, (Provided your power network could also maintain the power flow) and even maintain power for systems outside of the ship, like shields, tractor beam, the deflector dish, or much more. I also discovered that few onboard understood the propulsion mechanics involved with the QSC, Including myself. Having to adapt to a power core, and warp system like this because the Orion Syndicate ripped it from a Romulan Warbird and placed it into a Federation Aerie Class starship was interesting enough, but then to figure out how to use it without destroying not only the ship, but possibly the fabric of space-time itself was almost daunting to say the least.