Endangered Species Protection Ordinance

Total Page:16

File Type:pdf, Size:1020Kb

Endangered Species Protection Ordinance LAWS OF 6 Endangered Species ST. HELENA ENDANGERED SPECIES PROTECTION ORDER – SECTION 3 (Legal Notice 8 of 1996 made under Ord. 7 of 1996) Short title 1. This order may be cited as the Endangered Species Protection Order. Protection of certain animals and plants 2. The taking, damaging or killing of the plants and animals specified in the Schedule is forbidden. ___________ SCHEDULE Item no. Common name Scientific name Animals 1 Sea turtle and turtle eggs Chelonia mydas Eretmochelys imbricata 2 Spiney lobster when in berry Panulirus echinatus 3 Dolphins Stenalla attenuata Stenalla longirostris Tursiops truncatus 4 Wirebird Charadrius sanctae-helenae 5 Pickering or Maderian storm Oceanodroma castro castro petrel 6 Trophy bird or red-billed Phaethon aethereus tropicbird 7 Wideawake, sooty tern or eggbird Sterna fuscata 8 Blackbird or brown noddy Anous stolidus 9 Blackbird or noddy bird Anous minutus atlantious 10 White bird or fairy tern Gygis alba 11 Sooty shearwater Puffinus griseus 12 Little shearwater Puffinus lherminieri 13 Storm petrel spp. Pelagodroma marina Fregata ariel Fregata minor 14 Masked (blue-faced) booby Sula dactylatra 15 Brown booby Sula leucogaster 16 Red-footed booby Sula sula 17 Gull Larus sp. This e-version of the text is not authoritative for use in court. LAWS OF ST. HELENA Endangered Species 7 Plants 18 Baby’s toes Hrdrodea cryptantha 19 Bastard gumwood Commidendrum rotundifolium 20 Bone seed Osteospermum sanctae- helena 21 Dogwood Nesohedyotis arborea 22 Dwarf jelico Sium burchelli 23 Ebony Trochetiopsis ebenus 24 He cabbage tree Pladaroxylon leucadendron 25 Redwood Trochetiopsis erythroxylon 26 St. Helena rosemary Phylica polifolia 27 St. Helena salad plant Hypertelis acida 28 She cabbage tree Lachanodes arborea 29 Tree fern Dicksonia arborescens 30 Gumwood Commidendrum robustum 31 Whitewood Petrobium arboreum 32 Black cabbage tree Melanodendron integrifolium 33 Angelica/Large Jellico Sium helenianum 34 Scrubwood Commidendrum rugosum 35 False gumwood Commidendrum spurium 36 St. Helena tea plant Frankenia portulacaefolia 37 Lobelia Trimeris scaevofolia 38 Old father live forever Pelargonium cotyledonis 39 Plantain Plantago robusta 40 Small bellflower Wahlenbergia angustifolia 41 Large bellflower Wahlenbergia linifolia 42 St. Helena olive Nesiota elliptica This e-version of the text is not authoritative for use in court. .
Recommended publications
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • St Helena the Peaks National Park Conservation Management Plan
    St Helena The Peaks National Park Conservation Management Plan [2019-2024] 1 Contents of the Management Plan 1. THE VISION FOR THE NATIONAL PARK . .. 4 National Park location map . .. 5 2. NATIONAL PARK MANAGEMENT 2a.1 Rational for management . 6 2a.2 Identification of Features Influencing Management . 8 2a.3 Condition of the Features Influencing Management and the Main Factors affecting them . 13 3. MANAGEMENT OBJECTIVES 3a. Conservation of biodiversity objectives . 25 3b. Water security and climate change resilience objectives . 27 3c. Socio-economic objectives . 29 4. WORK PROGRAMME 4a. Conservation work programme . 31 4b. Water security and climate change resilience work programme . 36 4c. Socio-economic work programme . 42 5. RISK ASSESSMENT . 48 6. REQUIREMENTS FOR MONITORING, REPORTING, AND ASSESSMENT . 51 Appendix 1: SITE LOCATION AND DESIGNATION A1.1. Site location and relevant authorities . 52 A1.2 .Statutory, planning and other designations . 53 A1.3. Public access . 53 A1.4. Current issues and constraints . 54 Appendix 2: ENVIRONMENTAL INFORMATION A2.1. Climate . 55 A2.2. Geology, hydrogeology and soils . 56 St Helena soil quality map (2018) . 59 A2.3. Hydrology . 60 A2.4. Projected changes in climate . 61 A2.5. History of recent management a. Brief history of the area . 61 b. Management in the last 5 years . 62 A2.6. Current issues and constraints . 63 Appendix 3: BIOLOGICAL INFORMATION A3.1. Habitats and Vegetation communities . 64 A3.2. Important native plant species species . 66 A3.3. Trends of important native plant species . 68 A3.4. Predicted impacts of climate change on existing and potential important Features . 68 A3.5.
    [Show full text]
  • A New Species and Hybrid in the St Helen a Endemic Genus Trochetiopsis
    EDINB. 1. BOT. 52 (2): 205-213 (1995) 205 A NEW SPECIES AND HYBRID IN THE ST HELEN A ENDEMIC GENUS TROCHETIOPSIS Q. C. B. CRONK * The discovery in historic herbaria of an overlooked extinct endemic from the island of St Helena is reported. The first descriptions of St Helena Ebony, Trochetiopsis melanoxylon (Sterculiaceae), and the specimens associated with them in the herbaria of Oxford University (OXF) and the Natural History Museum, London (BM), do not match living and later-collected material, and instead represent an extinct plant. A new name is therefore needed for living St Helena Ebony: Trochetiopsis ebenus Cronk sp. nov. The hybrid between this species and the related T erythroxylon is also described here: Trochetiopsis x benjamini Cronk hybr. nov. (Sterculiaceae), and chromosome counts of 2n =40 are reported for the hybrid and both parents for the first time. The re-assessment of the extinct ebony emphasizes the importance of historic herbarium collections for the study of species extinction. INTRODUCTION In 1601 and 1610, at the beginning and end of his voyage to the East Indies, Franvois Pyrard de Laval touched at St Helena, an isolated island in the South Atlantic Ocean. He wrote: 'Sur Ie haut de la montagne il y a force arbre d'Ebene, et de bois de Rose' (Pyrard, 1679; Gray, 1890) - the first mention in print of species of Trochetiopsis (i.e. St Helena Redwood and St Helena Ebony). The island was settled in 1659, and the settlers of the English East India Company immediately put these ecologically important species to use.
    [Show full text]
  • Phylogeny of Hinterhubera, Novenia and Related
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.
    [Show full text]
  • FULL ACCOUNT FOR: Rubus Pinnatus Global Invasive Species Database (GISD) 2021. Species Profile Rubus Pinnatus. Available From: H
    FULL ACCOUNT FOR: Rubus pinnatus Rubus pinnatus System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Rosales Rosaceae Common name bramble (English), blackberry (English) Synonym Rubus kingaensis , Engl. Rubus madagascarius , Gust. Rubus madagascarius , fo. umbrosus Gust. Rubus pappei , Eckl. & Zeyh. Rubus pinnatus , subsp. afrotropicus Engl. Rubus pinnatus , var. afrotropicus Gust. Rubus pinnatus , var. defensus Gust. Rubus pinnatus , var. mutatus Gust. Rubus pinnatus , var. subglandulosus R. A. Grah. Rubus roridus , Lindl. Rubus rosifolius , Sm. Similar species Summary Rubus pinnatus is reported as being exceedingly common on the island of St Helena everywhere above an elevation of 1500 feet. view this species on IUCN Red List Species Description Rubus pinnatus a shrubby plant is described as follows: \"Leaves pinnate, leaflets five or seven, rarely three ovate-cordate lucid, strongly veined, doubly serrate. Panicles terminate. Stems, branches, petioles and peduncles armed ; tender shoots villous and hoary. Stem scarce, and what there is grows to be as thick as a man's leg sometimes. Branches numerous, very long and scandent, when their apices rest on the ground they strike root and produce other plants as in the other species of this genus. The young shoots glaucous and downy, the bark of the old dark brown ; all are well armed with numerous recurved prickles. Leaves alternate, pinnate 6-12 inches long, leaflets ovate and ovate-cordate, smooth doubly serrate. Petioles and ribs armed. Stipules petiolary, ensiform. Panicles term- inal, with their peduncles and sub-divisions armed and downy. Brackes like the stipules. Calycine segments lanceloate, nearly twice the length of the ovate, pink petals, and they are rather longer than the stamina and styles.
    [Show full text]
  • St Helena Invertebrate Sites
    Habitat Monitoring and Mapping Amy-Jayne Dutton St Helena National Trust DPLUS040 Securing the Future for St Helena’s endemic Invertebrates Habitats across St Helena St Helena has a number of habitats found nowhere else on earth (Cronk, 1989; Lambdon, 2012). In association with these, there is also a high diversity of endemic invertebrates. Few areas of endemic vegetation remain due to the impact of human settlers, goats, rabbits and other introduced species. Understanding the abundance, distribution, and diversity of remaining areas of endemic vegetation, along with the effectiveness of restoration areas at supporting native invertebrates, is crucial for the effective management of these sites and their associated fauna. Endemic vegetation includes Scrubwood Commidendrum rugosum (Vulnerable), St Helena Gumwood Commidendrum robustum (Critically Endangered), St Helena Dogwood Nesohedyotisarborea (Critically Endangered) and Whitewood Petrobium arboreum (Endangered). Scrubwood habitat is typically between 200m and 400m on the edges of the island, on the edges of St Helena. It is dry, with sparse vegetation; introduced species in these areas includes Wild Coffee (Chrysanthemoides monilifera), Lantana (Lantana camara) and Tungi (Opuntia elatior, O. ficus- indica). Generally small areas of this endemic vegetation can be found around the island, with a key stronghold on Blue Point. Gumwood habitat is typically mid altitude, ranging between dry and moist climates. Peak Dale is the largest stand of natural Gumwoods remaining, with other trees scattered around the island, including several individuals at Thompsons Wood 1.5km away. Forestry species such as Eucalyptus (E. grandis), Cape Yew (Afrocarpus falcata) and invasive non-natives including Whiteweed (Austroeupatorium inulifolium) and Wild Mango (Schinus terebinthifolius) surround and are invading this small area of native habitat.
    [Show full text]
  • Article (Refereed) - Postprint
    Article (refereed) - postprint Gray, Alan; Perry, Annika; Cavers, Stephen; Eastwood, Antonia; Biermann, Michelle; Darlow, Andrew; Thomas, Vanessa; Lambdon, Phil. 2017. Hybrid plants preserve unique genetic variation in the St Helena endemic trees Commidendrum rotundifolium DC Roxb. and C. spurium (G.Forst.) DC. Conservation Genetics, 18 (1). 241-246. 10.1007/s10592-016-0884-8 © 2016 Springer Science+Business Media Dordrecht 2016 This version available http://nora.nerc.ac.uk/514663/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher’s version. You are advised to consult the publisher’s version if you wish to cite from this article. The final publication is available at Springer via http://dx.doi.org/10.1007/s10592-016-0884-8 Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Title: Hybrid plants preserve unique genetic variation in the St Helena endemic trees 2 Commidendrum rotundifolium (Roxb.) DC and C. spurium (G.Forst.) DC. 3 Alan Gray1, Annika Perry1, Stephen Cavers1, Antonia Eastwood2, Michelle Biermann1, Andrew 4 Darlow3, Vanessa Thomas3, and Phil Lambdon4 5 1 NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, 6 UK 7 2 The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK 8 3 Environmental Management Division, Environment and Natural Resources Directorate, St.
    [Show full text]
  • 14Th Symposium Proceedings
    PROCEEDINGS OF THE 14TH SYMPOSIUM ON THE NATURAL HISTORY OF LOWER TENNESSEE AND CUMBERLAND RIVER VALLEYS BRANDON SPRING GROUP CAMP LAND BETWEEN THE LAKES MARCH 25 AND 26, 2011 SPONS0RED BY AUSTIN PEAY STATE UNIVERSITY THE CENTER OF EXCELLENCE FOR FIELD BIOLOGY AND MURRAY STATE UNIVERSITY WATERSHED STUDIES INSTITUTE AND U.S. DEPARTMENT OF AGRICULTURE, FOREST SERVICE LAND BETWEEN THE LAKES NATIONAL RECREATION AREA Austin Peay State University does not discriminate on the basis of race, color, national origin, sex, disability, or age in its programs and activities. The Director of Affirmative Action has been designated to handle inquiries regarding the non-discrimination policies and can be reached at 601 College Street, Browning Bldg. Room 7A, Clarksville, TN 37044, 931-221-7178, [email protected]. (AP33/7-13/100) TH PROCEEDINGS OF THE 14 SYMPOSIUM ON THE NATURAL HISTORY OF LOWER TENNESSEE AND CUMBERLAND RIVER VALLEYS HELD AT BRANDON SPRING GROUP CAMP LAND BETWEEN THE LAKES MARCH 25 AND 26, 2011 Sponsored by: The Center of Excellence for Field Biology Austin Peay State University, Clarksville, Tennessee and Watershed Studies Institute Murray State University, Murray, Kentucky and U.S. Department of Agriculture, Forest Service Land Between The Lakes National Recreation Area Golden Pond, Kentucky ******* EDITED BY: Rebecca Johansen, L. Dwayne Estes, Steven W. Hamilton, and Andrew N. Barrass Published by and available from: The Center of Excellence for Field Biology Austin Peay State University, Clarksville, Tennessee 37044 Price: $5.00 SUGGESTED CITATION Johansen, R., L.D.Austin Estes, PeayS.W. Hamilton,State Universit and A.N.y, Clarksville, Barrass (Editors). Tennessee 2013.
    [Show full text]
  • The Carbon Sequestration Potential of Commidendrum Robustum Roxb
    The carbon sequestration potential of Commidendrum robustum Roxb. (DC.) within the Millennium Forest restoration site, St Helena Island. Shayla J M Ellick MSc by Research University of York Environment June 2015 Abstract The drastic increase in anthropogenic greenhouse gas emissions (GHGs) (particularly carbon dioxide CO2) into the atmosphere is causing climate change around the world. Tropical forests are considered to be significant sinks of carbon, but are subject to widespread degradation and deforestation. Restoring and conserving tropical forests as a form of climate change mitigation, through the creation of off-setting schemes, can increase rates of carbon sequestration. Islands are particularly vulnerable to climate change, though they contribute relatively little to the world’s GHG emissions. St Helena Island, a UK Territory with a high rate of endemism in the South Atlantic Ocean, produces an estimated 11,000 tonnes of CO2 annually. St Helena’s native forests were decimated following the island’s discovery in 1502 and only fragments remain. A restoration project, ‘the Millennium Forest’, restoring endemic Commidendrum robustum Roxb. (DC.) woodland to the degraded Crown Wastes area is managed by the St Helena National Trust (SHNT). SHNT hope to use the site as the basis for a carbon off-setting scheme to mitigate CO2 emissions from the island’s new airport (expected to open in early 2016). This study found that C. robustum biomass and its associated carbon pools increased carbon stocks within the Crown Wastes area by approximately 52.5 ± 12.20 tonnes over 15 years. pH was found to be highly correlated with the carbon estimates.
    [Show full text]
  • Environmental Statement Volume 4 –A10.3 Past and Present Vegetation Communities Table of Contents
    St Helena Airport Environmental Statement – Volume 4: Appendix 10.3 ENVIRONMENTAL STATEMENT VOLUME 4 –A10.3 PAST AND PRESENT VEGETATION COMMUNITIES TABLE OF CONTENTS A10.3 PAST AND PRESENT VEGETATION COMMUNITIES 10.3-1 10.1 INTRODUCTION 10.3-1 10.2 PAST VEGETATION 10.3-1 10.3 PRESENT VEGETATION 10.3-2 Table of Contents St Helena Airport Environmental Statement – Volume 4: Appendix 10.3 A10.3 PAST AND PRESENT VEGETATION COMMUNITIES 10.1 Introduction A current assessment of the vegetation is necessary in order to fully assess the potential impact of the scheme on the vegetation and its associated fauna. However, this assessment cannot be done in isolation without an understanding of previously described vegetation structure, past and present. This is needed in order to understand the changes that are taking place (dynamic process of re-vegetation) and have taken place historically (what species are still present and what has been lost) and help to develop mitigation strategies in favour of the indigenous species. The vegetation of St Helena is almost entirely anthropogenic. It bares little correspondence with the past and as such for most people it is easier to accept that the current vegetation is natural (and most appropriate for the landscape) than it is to imagine what the Island once looked like prior to human activity. “The past vegetation has been replaced by browsing, grazing, erosion, cutting for timber and fuel, the introduction of non- native plants and clearance for cultivation, plantation forestry and pasture” (Cronk, 1984). With the result that St Helena has one of the rarest floras in the world (of 59 species), lost 9 out of 10 of its endemic birds and likely many invertebrates.
    [Show full text]