Author Index

Total Page:16

File Type:pdf, Size:1020Kb

Author Index Author Index The authors are listed in alphabetical order accordinq to the initial letter follovinq the first names. Aalders, J. 11. G. Acker, A. Agabeltyan, K. A. 113.022 133.031 011.039 1 .. 2.116 Ackermann, H. D. Agel, J. Aaronson, II. 105.08'l 003. 125 1 .. 1.056 Acton, r.. W. Aggarwal, s. s. 158.00q 071.1.005 .067 062.033 Abadian, 11. 076.0q3 Agrav al, P. :J9q. q36 125.036 162.087 Abalaltin, v. K. 1q2.038 Agr aw al, P • C. 09q. 00 3 Acuna, II. H. 11.12 .O'l9 Abbott, D. C. 031.1.081.1 Agrell, s. J. 06!l.OOq 099.006 .01.17 091.1 ... 91.1 Abell, G. Ada:::hi, Y. Ahern, F. J. 008.077 O'll.:Jq1 133.018 .019 Aohyankar, K. D. Adam, II. G. Ahm1, A. 155.052 072.028 151.017 .038 Abitbol, c. Adams, G. F. Ahma1, I. 031.0q1 091.1.213 09q.l.l19 Ablya:zov, v. s. Adams, J. B. Ahnert, P. 131. 113 092.009 09J.OqJ Aboltin, v. I. 091.1. 1.138 121.053 .OS'l .069 .:>70 083.076 097.0'l9 .071 .072 Abraham De Epstein. Adams, 11.-r.. Ahrens, L. H. A. E. 09q.q32 091.1.1.193 122.063 Adams, R. C. 105.108 Abramenko, A. L. 066.072 Ahrens, T. J. 091.038 Adams, T. F. 091.1.51.10 Abramenko, A. N. 133.022 Aiba, s. 097.011 11.11. 033 033.027 Abramenko, V. I. Adams, w. 11. Aihara, 11. 157.001 07'l.071.1 01.11.1.012 Abrami, A. 158. 137 Aika wa, T. 017.059 .062 Ad:::o:::k, B. S. 158.065 Abramov, L. A. 010.00 8 Aikens, :a. s. 062.051 Ade, P. A. R. 031.1. 013 Abt, H. A. 031.010 Aikman, G. c. r.. 116.003 Adelman, s. J. 11q .020 117.026 111.1.001.1 .:>OS lime, c. 153.030 Adqie, R. C.. 071.026 Abu-Eid, R .• II. 1q1.026 Ainsworth, J. E. 091.1. 1.169 Adler, I. 093.008 Abu-El-Ata, N. 091.1.11.18 .211 Aitken, F. K. 01.12. 008 Aerts, L. 091.1.1.172 Acllong, A. 099.210 Aizenman, 11. L. 077. 01.10 Afanas•ev, v. L. 065.001.1 .:>30 103.111.1 501 AUTHOR Ill DEI - VOL .13 l jello, J. Alexander, D. R • Altman, s. P. 097.0118 .055 061.043 052.057 Ajtmukhamhetov, l. A. Alexander, J. Altrock, R. c. 1113.080 1112.036 071.038 Akabane, K. Alexander, J. K. Altschuler, D. R. 103.100 051. 0 23 158.313 Akabane, r. 099.0011 Altscll ule r, II. D. 097.070 Alexander, II'. II. 080.021 Altasofu, s. -I. 10 6. 037 Altukhov, A. 11. 003.0211 Alexander Jr. , E. C. 078.009 08 II. 0 01 • 009 • 019 .231 094.5:11 1113.007 .232 .251 Alikayeva, K. v. Alurkar, s. K. 106.025 074.023 077.003 Akhmetshin, A. Kh. Alissandrakis, c. E. Alvarez, E. 052.0511 077.023 • J39 162.071 Akim, Eh. L. Alladin, S. II. Alvarez, H. 097.016 011.0311 078.016 AkiliOV, L. A. 151.039 .0112 Alvarez, J. A. 091. 035 Allegre, c. J. 022.083 Akin •yan, s. r. 0911.557 Alvarez, J. 11. 077.016 097.0110 1 06.026 Alti yam a, H. 105.004 Alvarez, 11. 1112.087 Allen, A. D. 074.001 lksenov, v. I. 015.0:12 Alvarez, R. 377.030 Allen, C. 0911.545 lksnes, K. 117.006 Amano, Y. 052.036 154.0)6 0 311. 130 J99. 202 • 213 • 231 • 236 Allen, D. A. Ambartsumyan, v. A. 101.015 113.012 004.901 Akunej, A. A. 1111.032 Ammalaimiev, G. I. 0116.002 121.066 0911. 105 Akyuz, J. H. 133.009 Amnuehl', P. R. 121.0711 141.608 066.073 Alam, B. Allen, L. R. 1112.096 076.010 158.035 Ananthakrishnan, s. Albee, A. L. Allen, II. 1 03 .1 00 0911.11112 131.005 Anctil, R. E. Albrecht, ll. Allen, R. J. 082.016 031. 262 158. 119 Anders, E. Albregtsen, F. Allen Jr., B. o. 0911.005 .159 .512 0311.075 094.158 1011.009 Aldagarova, Kh. z. Aller, H. D. 105.016 .077 .080 .089 1113.031 .079 1111.067 • 1511 Alean, J. Aller, L. H. 131 .137 098.0111 074.011 Andersen, J. 104.007 .008 1111.021 121 .021 &leltsandrov, Yu. N. 133.011 .)12 .)24 .028 Andersen, J. B. 0 9 7. 0 0 1 • 0 20 159.012 • 019 033.043 Aleltsandrov, Yu. v. Alleyne, H. Andersen, K. 097.093 .0911 082.017 114.053 Alekseev, G. l. Allum, F. R. Anderson, A. T. )66. 052 • 053 078.005 033.0511 Alekseev, G. N. Almar, I. V. 0911.512 0 3 1. 20 II • 2 12 082.091 Anderson, c. II. 122.028 Alme , 11. L. 122.0118 Alekseev, I. I. 1112. 133 124.100 073.018 Alpa r, II. A. 141 .604 08 II. 257 065.110 Anderson, D. H. Alekseev, N. v. Alpern, B. 094.467 078.0011 105.150 Anderson, D. L • Aleltseev, '1. A. Al1 perovich, L. s. 072.01 0 085.016 062.051 0911.137 105. 141 Al' pert, Ya. L. Anderson, D. II. 131.113 003.025 081.011 Alers, G. A. 083.074 Anderson, H. 0911.205 Alschuler, II'. R. 009.005 llers, s. 114.012 .052 .092 Anderson, H. R. 119.017 Alt, E. 084.005 .012 .026 .027 Aleshin, v. I. 036.004 .028 .030 097.016 Altenb.off, w. J. Anderson, J. 131.506 092.014 502 AUTHOR IIIDEX - VOL.13 Anderson, J. D. Antonova, E. E. Arons, J. 099.033 0811.021 131 .0110 Anderson, J. L. Antonova, L. A. 1111.093 • 0911 092.015 083.0119 .061 Arora, B. B. Anderson, K. A. Antonucci, E. 0811.250 0811. 27 3 071l.151 Arp, H. Anderson, K. B. Antrim Jr., 11. D. 003.021 0911.217 032.0110 1111.063 .102 Anderson, o. L. 051.006 158.0111 .135 0911.5119 Antropova, L. G. lrp, H. C. Anderson, P. II. 158.053 -1111.105 065.110 Inzer, u. Arrhenius, G. Anderson, B. G. 11. 061.050 105.017 003.026 lpeldoorn, B. Arsla nov, Kll. A. Anderson, s. 1011.0111 .0311 085.015 1211. 1011 Appa R ao, K. V. K • Arumonov, B. P. Andrade, J. 011.030 158.052 .053 062.010 Apparao, K. 11. 1r. Artru, 11.-c. Andre, c. 1112.008 022.059 0911.1118 Appenzeller, I. Artus, H. Andre, c. G. 065.079 032.006 0911.211 131.050 .138 Artyukh, v. s. lndrenelli, P. Appleby, J. F. 096.010 015.013 091.001 Artyulthina, 11. 11. Andrew, B. H. Apruze se , J. P. 153.0211 .025 158.071l 0611.021 .022 .023 Asano, s. Andrews, A. D. 133.027 063.010 113.053 Aquirre, c. As aDOY a, A. Ill • Andrianov, s. A. 141.365 017.051 017.007 Arazov, G. T. Asbridge, J. B. lndrienko, D. 1. 0112.0611 0711.129 .1113 099. 230 Ardeberg, l • Aschenbach, B. 102.026 .029 031.1112 .1113 1311.009 103. 100 114.035 Ashbrook, J. Andr iesse, C. A. Arden, J, II. 004.017 131.015 105.091 .uo 098.008 Andrillat, Y. Aren:i, s. 118.007 103.100 007.000 lShirov, R. R. 1111.0811 Argue, A. 111. 1113.005 .080 125.101 031.1115 Aslanov, I. A. 133.032 Argyra.tos, J. 032 .007 Angel, J. B. P. 008.008 116.006 .007 .010 126.002 .005 .oc8 Arifov, L. Ya. Assousa, G. E. 131.011 0111.005 1111 • 0117 Anger, c. D. Ariskin, v. J:. Ast af' ev, E. B. 0811.019 131.113 151 .0311 Angione, R. J. Arkani-Hamed, J. lSteriadis, G. 1:l3.10J 0911.117 .219 .239 0113 .008 Anglin, J. D. Arklli pova, V. P. As una a a, 5. K. 078.025 003.016 1 05 .017 Angus-Leppan, P. v. 133.017 Asylbaeva, s. D. 012.023 Armand, II. A. 1113.006 .078 lnnabi, F. 033.066 Atkins, H. r.. 0112.075 Armenti Jr., A. 119.010 Annal, R, 066. 132 Atkinson, G. 123.0113 AriiStrong, J. c. 083.0 211 1211. 108 0811.009 Atkinson, R. D1 E. lnnell, c. s. Arnett, 11. D. 01111.003 0911.1185 065.0211 Atkinson, R. J. c. Ansari, s. K. R. 066.0811 0011.009 .033 076.010 .037 125.007 .015 .J57 Atreya, s. K. 131.538 1111.3112 082 .0311 Antal, K. 151.015 091.0112 098.055 Arnold, J. R • 100.0011 103.008 .1211 0911.150 • 528 Atwater, H. A. An to nets, 11. A. Arnoldy, a. L. 003.027 131.113 083.063 Atwood, B. lntonov, v. A. Arnould, 11. 031.1117 151.032 0611.050 118.010 Antonova, A. E. 065.075 Aubry, c. 0811.253 033.061 503 AOTHOR IRDEX - VOC..13 Audouze, J. Badalyan, o. G. Baker, L. R. 131.087 .110 071.047 099.030 Auer, L. H. Baddenhausen, H. Baker, P. r.. 064.061 094.500 155.039 071.034 Badr-E-Alaa Bakhareva, 11. P. Auer, s. 076.037 074.083 034.128 Baedecker, P. A. Bakoev, N. Aufgebauer, P. 094.510 .511 047.002 004.015 105.026 .128 Balasuorah11anyan, v. K. Augason, G. C. Bae tsle, P. L. 078.012 114. 335 011 • 01 8 Bahsubramanian, v. Au•an, J. R. Bagby, J. P. 141.336 064.024 072.005 Baldinelli, r.
Recommended publications
  • Download This Article in PDF Format
    A&A 619, A61 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833747 & c ESO 2018 Astrophysics Dramatic change in the boundary layer in the symbiotic recurrent nova T Coronae Borealis G. J. M. Luna1,2,3 , K. Mukai4,5, J. L. Sokoloski6, T. Nelson7, P. Kuin8, A. Segreto9, G. Cusumano9, M. Jaque Arancibia10,11, and N. E. Nuñez11 1 CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Av. Inte. Güiraldes 2620, C1428ZAA Buenos Aires, Argentina e-mail: [email protected] 2 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 3 Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200, F. Varela, Buenos Aires, Argentina 4 CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 5 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 6 Columbia Astrophysics Lab 550 W 120th St., 1027 Pupin Hall, MC 5247 Columbia University, New York, NY 10027, USA 7 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 8 University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking RH5 6NT, UK 9 INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, 90146 Palermo, Italy 10 Departamento de Física y Astronomía, Universidad de La Serena, Av. Cisternas 1200, La Serena, Chile 11 Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE-CONICET), Av. España Sur 1512, J5402DSP San Juan, Argentina Received 29 June 2018 / Accepted 23 August 2018 ABSTRACT A sudden increase in the rate at which material reaches the most internal part of an accretion disk, i.e., the boundary layer, can change its structure dramatically.
    [Show full text]
  • Extensional Tectonics in Tempe Terra 8 May 2006
    Extensional tectonics in Tempe Terra 8 May 2006 Tectonic processes (extensional stresses, in this case) have led to the development of these grabens. After the tectonic activity, other processes reshaped the landscape. In the scene, the results of weathering and mass transport can be seen. Due to erosion, the surface has been smoothed, giving formerly sharp edges a rounded appearance. Such terrain is called "fretted terrain" and is characteristic for the transition of highland to lowland. The valleys and grabens are 5 to 10 kilometres wide and up to 1500 metres deep. Along the graben flanks, the layering of the bedrock is exposed. The lineations on the valley floors are attributed to a slow viscous movement of material, Extensional tectonics in Tempe Terra. presumably in connection with ice. These lineations and indications of possible ice underneath the surface lead scientists to assume that the structures are rock glaciers or similar phenomena These images, taken by the High Resolution known from alpine regions on Earth. Stereo Camera (HRSC) on board ESA's Mars Express spacecraft, show the tectonic 'grabens' in The stereo and colour capabilities, and the high- Tempe Terra, a geologically complex region that is resolution coverage of extended areas, provided by part of the old Martian highlands. the HRSC camera allow for improved study of the complex geologic evolution of the Red Planet. The The HRSC obtained these images during orbit Mars Express HRSC camera gives scientists the 1180 on 19 December 2004 with a ground opportunity to better understand the tectonics of resolution of approximately 16.5 metres per pixel.
    [Show full text]
  • 136, June 2008
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • First Science with the Keck Interferometer Nuller R
    The Astrophysical Journal, 677:1253Y1267, 2008 April 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. MILLIARCSECOND N-BAND OBSERVATIONS OF THE NOVA RS OPHIUCHI: FIRST SCIENCE WITH THE KECK INTERFEROMETER NULLER R. K. Barry,1,2 W. C. Danchi,1 W. A. Traub,3 J. L. Sokoloski,4 J. P. Wisniewski,1 E. Serabyn,3 M. J. Kuchner,1 R. Akeson,5 E. Appleby,6 J. Bell,6 A. Booth,3 H. Brandenburg,5 M. Colavita,3 S. Crawford,3 M. Creech-Eakman,3 W. Dahl,6 C. Felizardo,5 J. Garcia,3 J. Gathright,6 M. A. Greenhouse,1 J. Herstein,5 E. Hovland,3 M. Hrynevych,6 C. Koresko,3 R. Ligon,3 B. Mennesson,3 R. Millan-Gabet,5 D. Morrison,6 D. Palmer,3 T. Panteleeva,6 S. Ragland,6 M. Shao,3 R. Smythe,3 K. Summers,6 M. Swain,3 K. Tsubota,6 C. Tyau,6 E. Wetherell,6 P. Wizinowich,6 J. Woillez,6 and G. Vasisht3 Received 2007 August 9; accepted 2008 January 9 ABSTRACT We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approxi- mately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N band from 8 to 12.5 m in a nulling mode. The nulling technique is the sparse aperture equivalent of the conventional coronagraphic technique used in filled aperture tele- scopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller
    High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller ABSTRACT We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferome- ter Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a con- ventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture tele- scopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • N95- 27078 13 Discussion on Selected Symbiotic Stars
    N95- 27078 13 DISCUSSION ON SELECTED SYMBIOTIC STARS R. Viotti and M. Hack I. INTRODUCTION made of its variations" (Mayall, 1969). This pessimistic remark should be consid- Because of its large variety of aspects, the ered as a note of caution for those involved in symbiotic phenomenon is not very suitable for the interpretation of the observations. In the a statistical treatment. It is also not clear following, we shall discuss a number of indi- whether symbiotic stars really represent a vidual symbiotic stars for which the amount of homogeneous group of astrophysical objects or observational data is large enough to draw a a collection of objects of different natures but rather complete picture of their general behav- showing similar phenomena. However, as al- ior and to make consistent models. We shall ready discussed in the introduction to the sym- especially illustrate the necessary steps toward biotic stars, in this monograph we are espe- an empirical model and take the discussion of cially interested in the symbiotic phenomenon, the individual objects as a useful occasion to i.e., in those physical processes occurring in describe different techniques of diagnosis. the atmosphere of each individual object and in their time dependence. Such a research can be I1. Z ANDROMEDAE AND THE DIAGNOS- performed through the detailed analysis of TICS OF THE SYMBIOTIC STARS individual objects. This study should be done for a time long enough to cover all the different II.A. INTRODUCTION phases of their activity, in all the spectral ranges. Since the typical time scale of the symbiotic phenomena is up to several years and Z And has been considered as the prototype decades, this represents a problem since, for of the symbiotic stars, from its light history and instance, making astronomy outside the visual the spectral variation during outburst.
    [Show full text]