Publications of Variable Star Section, Royal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download This Article in PDF Format
A&A 619, A61 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833747 & c ESO 2018 Astrophysics Dramatic change in the boundary layer in the symbiotic recurrent nova T Coronae Borealis G. J. M. Luna1,2,3 , K. Mukai4,5, J. L. Sokoloski6, T. Nelson7, P. Kuin8, A. Segreto9, G. Cusumano9, M. Jaque Arancibia10,11, and N. E. Nuñez11 1 CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Av. Inte. Güiraldes 2620, C1428ZAA Buenos Aires, Argentina e-mail: [email protected] 2 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 3 Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200, F. Varela, Buenos Aires, Argentina 4 CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 5 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 6 Columbia Astrophysics Lab 550 W 120th St., 1027 Pupin Hall, MC 5247 Columbia University, New York, NY 10027, USA 7 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 8 University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking RH5 6NT, UK 9 INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, 90146 Palermo, Italy 10 Departamento de Física y Astronomía, Universidad de La Serena, Av. Cisternas 1200, La Serena, Chile 11 Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE-CONICET), Av. España Sur 1512, J5402DSP San Juan, Argentina Received 29 June 2018 / Accepted 23 August 2018 ABSTRACT A sudden increase in the rate at which material reaches the most internal part of an accretion disk, i.e., the boundary layer, can change its structure dramatically. -
136, June 2008
British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution -
First Science with the Keck Interferometer Nuller R
The Astrophysical Journal, 677:1253Y1267, 2008 April 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. MILLIARCSECOND N-BAND OBSERVATIONS OF THE NOVA RS OPHIUCHI: FIRST SCIENCE WITH THE KECK INTERFEROMETER NULLER R. K. Barry,1,2 W. C. Danchi,1 W. A. Traub,3 J. L. Sokoloski,4 J. P. Wisniewski,1 E. Serabyn,3 M. J. Kuchner,1 R. Akeson,5 E. Appleby,6 J. Bell,6 A. Booth,3 H. Brandenburg,5 M. Colavita,3 S. Crawford,3 M. Creech-Eakman,3 W. Dahl,6 C. Felizardo,5 J. Garcia,3 J. Gathright,6 M. A. Greenhouse,1 J. Herstein,5 E. Hovland,3 M. Hrynevych,6 C. Koresko,3 R. Ligon,3 B. Mennesson,3 R. Millan-Gabet,5 D. Morrison,6 D. Palmer,3 T. Panteleeva,6 S. Ragland,6 M. Shao,3 R. Smythe,3 K. Summers,6 M. Swain,3 K. Tsubota,6 C. Tyau,6 E. Wetherell,6 P. Wizinowich,6 J. Woillez,6 and G. Vasisht3 Received 2007 August 9; accepted 2008 January 9 ABSTRACT We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approxi- mately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N band from 8 to 12.5 m in a nulling mode. The nulling technique is the sparse aperture equivalent of the conventional coronagraphic technique used in filled aperture tele- scopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller
High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller ABSTRACT We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferome- ter Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a con- ventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture tele- scopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. -
International Astronomical Union Commission G1 BIBLIOGRAPHY of CLOSE BINARIES No
International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 104 Editor-in-Chief: W. Van Hamme Editors: R.H. Barb´a D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by March 15, 2017 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a. Catalogues b. Discoveries of new binaries and novae c. -
The Old Nova CP Puppis: a Carbon Nova and Asynchronous Polar?⋆
A&A 539, A94 (2012) Astronomy DOI: 10.1051/0004-6361/201117251 & c ESO 2012 Astrophysics The old nova CP Puppis: a carbon nova and asynchronous polar? A. Bianchini1,T.Saygac2, M. Orio3, M. della Valle4, and R. Williams5 1 Department of Astronomy, University of Padova, vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Department of Astronomy and Space Sciences, Istanbul University, Istanbul 34119, Turkey 3 INAF – Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy 4 INAF – Osservatorio Astronomico di Napoli, Salita Moiariello 16, 80131 Napoli, Italy 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received 12 May 2011 / Accepted 21 January 2012 ABSTRACT Context. CP Pup (Nova Pup 1942) showed outburst and quiescent characteristics indicating a very massive white dwarf, yet the standard spectroscopic dynamical analysis assuming an accretion disk yields an extremely low value for the white dwarf mass. However, some physical parameters and the accretion geometry are still poorly known. Aims. The nova was spectroscopically monitored between 1988 and 1996. We analyzed the whole data set in order to re-determine the spectroscopic period and examine its stability. We also looked for chemical anomalies in the spectrum. Methods. We obtained the radial velocity curves for the hydrogen and helium lines from our last better quality 1996 run. The mean 1996 spectrum yields information on the chemical composition of the binary. We also searched the mean period using the multi-year data set. Results. From the radial velocities of our complete data set we derive the most probable mean spectroscopic period and tentatively suggest revised ephemeris. -
Prof.Dr. Ahmet Talat SAYGAÇ
Prof.Dr. Ahmet Talat SAYGAÇ Kişisel Bilgiler Fİşa xT eTlelfeofnoun:u +: 9+09 201 221 424 404 00 00307 D0 ahili: 10282 WE-epbo:s that:t pssa:/y/[email protected]/astronomy PVoezsntaec Ailedrr -e Fsia:t iİhs t-a İnsbtaunl bÜunliversitesi (Rektörlük Bahçe İçi), Fen Fakültesi, Astronomi ve Uzay Bilimleri Bölümü, 34134 - Beyazıt - Eğitim Bilgileri YDüokksteokr aL, iİssatnans,b İustl aÜnnbiuvel rÜsnitievseir, sFiteens iB, Filiemnl eBrilii mEnlesrtiit üEsnüs,t iAtüsstrüo, nAosmtroi Vnoe mUiz aVye BUizliamyl eBrilii mBölelürim, Tüü, rTküirykei y1e9 8119 8- 31 9- 813994 ÖLins aLnisa, nEsg,e E Üdnirinver Esğitietismi, FEenns tFitaüksüül,t eFsizi,i kA s- tKroimnyoam -i BViey oUlzoajiy, TBüilrimkilyeer i1 B9ö7l4ü m- 1ü9, 7T5ürkiye 1975 - 1980 Yİnagbiliazcnec, Bı 2D Oilrltea rÜstü Yaptığı Tezler EDnoskttiotürsaü, ,V AWst rHoyndormi Ki aVtea kUlizsamy iBk iDlimeğleişrei,n 1 Y9ı9ld4ızın Optik ve Morötesi Tayfsal Analizi, İstanbul Üniversitesi, Fen Bilimleri BYüilikmselekr Li, i1sa9n8s3, SA 57 Alanının RGU Fotometrisi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Astronomi Ve Uzay ABirliamş, tTıerkmnoalo Aji lvaen Tloaprlıum, Eğitim, Fizik, Astronomi ve Astrofizik, Güneş ve Güneş Sistemleri, Temel Astronomi ve dAısştır noefisznike:l eErn vster üsimstaenmtalesry;oevnr, eTne,k Ynıilkdlıezrla vre, TAesmtreoln Boimlimikl egrözlemler, Yıldız Sistemleri;Yıldızlararası ortam;galaktik ve galaksi Akademik Unvanlar / Görevler DProoçf.D.Drr.,. , İİssttaannbbuull ÜÜnniivveerrssiitteessii, , FFeenn FFaakküülltteessii, , AAssttrroonnoommii -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Keith Horne: Refereed Publications Papers Submitted: 425. “A
Keith Horne: Refereed Publications Papers Submitted: 427. “The Lick AGN Monitoring Project 2016: Velocity-Resolved Hβ Lags in Luminous Seyfert Galaxies.” V.U, A.J.Barth, H.A.Vogler, H.Guo, T.Treu, et al. (202?). ApJ, submitted (01 Oct 2021). 426. “Multi-wavelength Optical and NIR Variability Analysis of the Blazar PKS 0027-426.” E.Guise, S.F.H¨onig, T.Almeyda, K.Horne M.Kishimoto, et al. (202?). (arXiv:2108.13386) 425. “A second planet transiting LTT 1445A and a determination of the masses of both worlds.” J.G.Winters, et al. (202?) ApJ, submitted (30 Jul 2021). (arXiv:2107.14737) 424. “A Different-Twin Pair of Sub-Neptunes orbiting TOI-1064 Discovered by TESS, Characterised by CHEOPS and HARPS” T.G.Wilson et al. (202?). ApJ, submitted (12 Jul 2021). 423. “The LHS 1678 System: Two Earth-Sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc” M.L.Silverstein, et al. (202?). AJ, submitted (24 Jun 2021). 422. “A temperate Earth-sized planet with strongly tidally-heated interior transiting the M8 dwarf LP 791-18.” M.Peterson, B.Benneke, et al. (202?). submitted (09 May 2021). 421. “The Sloan Digital Sky Survey Reverberation Mapping Project: UV-Optical Accretion Disk Measurements with Hubble Space Telescope.” Y.Homayouni, M.R.Sturm, J.R.Trump, K.Horne, C.J.Grier, Y.Shen, et al. (202?). ApJ submitted (06 May 2021). (arXiv:2105.02884) Papers in Press: 420. “Bayesian Analysis of Quasar Lightcurves with a Running Optimal Average: New Time Delay measurements of COSMOGRAIL Gravitationally Lensed Quasars.” F.R.Donnan, K.Horne, J.V.Hernandez Santisteban (202?) MNRAS, in press (28 Sep 2021). -
Shells Around Southern Novae H
No. 17 - June 1979 Shells Around Southern Novae H. W. Duerbeck and W. C. Seitter Spencer Jones published in 1931 a bulky volume of Although less spectacular than their big brothers, spectroscopic and visual observations made at the Cape the supernovae, the novae are by no means less Observatory. Another southern observer, J. Hartmann in interesting. They are also much more frequent Buenos Aires, observed the nova spectroscopically and wrote the most concise astronomical paper ever publish and several are known in the southern sky. After ed, a telegram senJ to the Astronomische Nachrichten: the initial explosion, a shell expands around the "Nova problem solved; star blows up, bursts." And indeed, nova and may become visible after a while. Drs. when double-star observers examined the postnova two Hilmar Duerbeck and Waltraut Seitter from the Hoher-List Observatory, near Bonn, FRG, recently observed three southern novae. The excellent resolution of the 3.6 m photos makes itpossible to see details in the very faint nova shells that have never been perceived before. The southern sky comprises one of the most fanciful supernova remnants-the extended spider web of the Gum nebula. It harbours also some less spectacular, tiny, astronomically shortlived phenomena: the remnants of near nova explosions. They can be observed for only a few decades after outburst, before they thin out and merge into the interstellar medium. Due to their small size and low surface brightness, they require large telescopes, such as have recently become available in the southern hemi sphere. Fortunately, some observing time was granted to us before the above-mentioned disappearances! RR Pictoris Two brilliant novae shone in the southern sky in this century.