Geometry © 2005 Springer Science+Business Media, Inc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apollonian Circle Packings: Dynamics and Number Theory
APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them. -
Arxiv:1603.05202V1 [Math.MG] 16 Mar 2016 Etr .Itrue Peia Amnc 27 Harmonics Spherical Interlude: 3
Contents Packing, coding, and ground states Henry Cohn 1 Packing, coding, and ground states 3 Preface 3 Acknowledgments 3 Lecture 1. Sphere packing 5 1. Introduction 5 2. Motivation 6 3. Phenomena 8 4. Constructions 10 5. Difficulty of sphere packing 12 6. Finding dense packings 13 7. Computational problems 15 Lecture 2. Symmetry and ground states 17 1. Introduction 17 2. Potential energy minimization 18 3. Families and universal optimality 19 4. Optimality of simplices 23 Lecture 3. Interlude: Spherical harmonics 27 1. Fourier series 27 2. Fourier series on a torus 29 3. Spherical harmonics 31 Lecture4. Energyandpackingboundsonspheres 35 arXiv:1603.05202v1 [math.MG] 16 Mar 2016 1. Introduction 35 2. Linear programming bounds 37 3. Applying linear programming bounds 39 4. Spherical codes and the kissing problem 40 5. Ultraspherical polynomials 41 Lecture 5. Packing bounds in Euclidean space 47 1. Introduction 47 2. Poisson summation 49 3. Linear programming bounds 50 4. Optimization and conjectures 52 Bibliography 57 i Packing, coding, and ground states Henry Cohn Packing, coding, and ground states Henry Cohn Preface In these lectures, we’ll study simple models of materials from several different perspectives: geometry (packing problems), information theory (error-correcting codes), and physics (ground states of interacting particle systems). These per- spectives each shed light on some of the same problems and phenomena, while highlighting different techniques and connections. One noteworthy phenomenon is the exceptional symmetry that is found in certain special cases, and we’ll examine when and why it occurs. The overall theme of the lectures is thus order vs. -
The Sphere Packing Problem in Dimension 8 Arxiv:1603.04246V2
The sphere packing problem in dimension 8 Maryna S. Viazovska April 5, 2017 8 In this paper we prove that no packing of unit balls in Euclidean space R has density greater than that of the E8-lattice packing. Keywords: Sphere packing, Modular forms, Fourier analysis AMS subject classification: 52C17, 11F03, 11F30 1 Introduction The sphere packing constant measures which portion of d-dimensional Euclidean space d can be covered by non-overlapping unit balls. More precisely, let R be the Euclidean d vector space equipped with distance k · k and Lebesgue measure Vol(·). For x 2 R and d r 2 R>0 we denote by Bd(x; r) the open ball in R with center x and radius r. Let d X ⊂ R be a discrete set of points such that kx − yk ≥ 2 for any distinct x; y 2 X. Then the union [ P = Bd(x; 1) x2X d is a sphere packing. If X is a lattice in R then we say that P is a lattice sphere packing. The finite density of a packing P is defined as Vol(P\ Bd(0; r)) ∆P (r) := ; r > 0: Vol(Bd(0; r)) We define the density of a packing P as the limit superior ∆P := lim sup ∆P (r): r!1 arXiv:1603.04246v2 [math.NT] 4 Apr 2017 The number be want to know is the supremum over all possible packing densities ∆d := sup ∆P ; d P⊂R sphere packing 1 called the sphere packing constant. For which dimensions do we know the exact value of ∆d? Trivially, in dimension 1 we have ∆1 = 1. -
Sphere Packing, Lattice Packing, and Related Problems
Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro]. -
Global Optimization Approach to Unequal Sphere Packing Problems in 3D1
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 114, No. 3, pp. 671–694, September 2002 (2002) Global Optimization Approach to Unequal Sphere Packing Problems in 3D1 2 3 A. SUTOU AND Y. DAI Communicated by P. M. Pardalos Abstract. The problem of the unequal sphere packing in a 3-dimen- sional polytope is analyzed. Given a set of unequal spheres and a poly- tope, the double goal is to assemble the spheres in such a way that (i) they do not overlap with each other and (ii) the sum of the volumes of the spheres packed in the polytope is maximized. This optimization has an application in automated radiosurgical treatment planning and can be formulated as a nonconvex optimization problem with quadratic constraints and a linear objective function. On the basis of the special structures associated with this problem, we propose a variety of algorithms which improve markedly the existing simplicial branch-and- bound algorithm for the general nonconvex quadratic program. Further, heuristic algorithms are incorporated to strengthen the efficiency of the algorithm. The computational study demonstrates that the proposed algorithm can obtain successfully the optimization up to a limiting size. Key Words. Nonconvex quadratic programming, unequal sphere packing problem, simplicial branch-and-bound algorithm, LP relax- ation, heuristic algorithms. 1. Introduction The optimization of the packing of unequal spheres in a 3-dimensional polytope is analyzed. Given a set of unequal spheres and a polytope, the 1The authors thank two anonymous referees for their valuable comments. The work of the second author was partially supported by Grant-in-Aid C-13650444 from the Ministry of Education, Science, Sports, and Culture of Japan. -
MATH 9 HOMEWORK ASSIGNMENT GIVEN on FEBRUARY 3, 2019. CIRCLE INVERSION Circle Inversion Circle Inversion (Or Simply Inversion) I
MATH 9 HOMEWORK ASSIGNMENT GIVEN ON FEBRUARY 3, 2019. CIRCLE INVERSION Circle inversion Circle inversion (or simply inversion) is a geometric transformation of the plane. One can think of the inversion as of reflection with respect to a circle which is analogous to a reflection with respect to a straight line. See wikipedia article on Inversive geometry. Definition of inversion Definition. Given a circle S with the center at point O and having a radius R consider the transformation of the plane taking each point P to a point P 0 such that (i) the image P 0 belongs to a ray OP (ii) the distance jOP 0j satisfies jOP j · jOP 0j = R2. Remark. Strictly speaking the inversion is the transformation not of the whole plane but a plane without point O. The point O does not have an image. It is convenient to think of an “infinitely remote" point O0 added to a euclidian plane so that O and O0 are mapped to each other by the inversion. Basic properties of inversion We formulated and proved some basic properties of the inversion. The most important properties are that the inversion • maps circles and straight lines onto circles and straight lines • preserves angles These properties are stated as homework problems below. Try to prove them indepen- dently. In the following we denote the center of inversion as O, the circle of inversion as S and we use prime to denote the images of various objects under inversion. Classwork Problems The properties presented in problems 1-3 are almost obvious. -
Sphere Packing
Sphere packing Henry Cohn IAP Math Lecture Series January 16, 2015 The sphere packing problem How densely can we pack identical spheres into space? Not allowed to overlap (but can be tangent). Density = fraction of space filled by the spheres. Why should we care? The densest packing is pretty obvious. It's not difficult to stack cannonballs or oranges. It's profoundly difficult to prove (Hales 1998, 2014). But why should anyone but mathematicians care? One answer is that it's a toy model for: Granular materials. Packing more complicated shapes into containers. Sphere packing is a first step towards these more complex problems. Varying the dimension What if we didn't work in three-dimensional space? The two-dimensional analogue is packing circles in the plane. Still tricky to prove, but not nearly as difficult (Thue 1892). What about one dimension? What's a one-dimensional sphere? Spheres in different dimensions Sphere centered at x with radius r means the points at distance r from x. r x Ordinary sphere in three dimensions, circle in two dimensions. Just two points in one dimension: r x The inside of a one-dimensional sphere is an interval. r x One-dimensional sphere packing is boring: (density = 1) Two-dimensional sphere packing is prettier and more interesting: (density ≈ 0:91) Three dimensions strains human ability to prove: (density ≈ 0:74) What about four dimensions? Is that just crazy? Some history Thomas Harriot (1560{1621) Mathematical assistant to Sir Walter Raleigh. A Brief and True Report of the New Found Land of Virginia (1588) First to study the sphere packing problem. -
Efficiently Constructing Tangent Circles
Mathematics Magazine ISSN: 0025-570X (Print) 1930-0980 (Online) Journal homepage: https://www.tandfonline.com/loi/umma20 Efficiently Constructing Tangent Circles Arthur Baragar & Alex Kontorovich To cite this article: Arthur Baragar & Alex Kontorovich (2020) Efficiently Constructing Tangent Circles, Mathematics Magazine, 93:1, 27-32, DOI: 10.1080/0025570X.2020.1682447 To link to this article: https://doi.org/10.1080/0025570X.2020.1682447 Published online: 22 Jan 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umma20 VOL. 93, NO. 1, FEBRUARY 2020 27 Efficiently Constructing Tangent Circles ARTHUR BARAGAR University of Nevada Las Vegas Las Vegas, NV 89154 [email protected] ALEX KONTOROVICH Rutgers University New Brunswick, NJ 08854 [email protected] The Greek geometers of antiquity devised a game—we might call it geometrical solitaire—which ...mustsurelystand at the very top of any list of games to be played alone. Over the ages it has attracted hosts of players, and though now well over 2000 years old, it seems not to have lost any of its singular charm or appeal. –HowardEves The Problem of Apollonius is to construct a circle tangent to three given ones in a plane. The three circles may also be limits of circles, that is, points or lines; and “con- struct” means using a straightedge and compass. Apollonius’s own solution did not survive antiquity [8], and we only know of its existence through a “mathscinet review” by Pappus half a millennium later. -
Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra
Discrete Comput Geom (2011) 46:799–818 DOI 10.1007/s00454-010-9304-x Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra Simon Gravel · Veit Elser · Yoav Kallus Received: 16 August 2010 / Accepted: 28 September 2010 / Published online: 14 October 2010 © Springer Science+Business Media, LLC 2010 Abstract Aristotle contended that (regular) tetrahedra tile space, an opinion that re- mained widespread until it was observed that non-overlapping tetrahedra cannot sub- tend a solid angle of 4π around a point if this point lies on a tetrahedron edge. From this 15th century argument, we can deduce that tetrahedra do not tile space but, more than 500 years later, we are unaware of any known non-trivial upper bound to the packing density of tetrahedra. In this article, we calculate such a bound. To this end, we show the existence, in any packing of regular tetrahedra, of a set of disjoint spheres centered on tetrahedron edges, so that each sphere is not fully covered by the pack- ing. The bound on the amount of space that is not covered in each sphere is obtained in a recursive way by building on the solid angle argument. The argument can be readily modified to apply to other polyhedra. The resulting lower bound on the frac- tion of empty space in a packing of regular tetrahedra is 2.6 ...× 10−25 and reaches 1.4 ...× 10−12 for regular octahedra. Keywords Tetrahedron · Octahedron · Packing · Upper bound · Regular solid · Hilbert problem 1 Introduction The problem of finding dense arrangements of non-overlapping objects, also known as the packing problem, holds a long and eventful history and holds fundamental in- terest in mathematics, physics, and computer science. -
Generalizations of Steiner's Porism and Soddy's Hexlet
Generalizations of Steiner’s porism and Soddy’s hexlet Oleg R. Musin Steiner’s porism Suppose we have a chain of k circles all of which are tangent to two given non-intersecting circles S1, S2, and each circle in the chain is tangent to the previous and next circles in the chain. Then, any other circle C that is tangent to S1 and S2 along the same bisector is also part of a similar chain of k circles. This fact is known as Steiner’s porism. In other words, if a Steiner chain is formed from one starting circle, then a Steiner chain is formed from any other starting circle. Equivalently, given two circles with one interior to the other, draw circles successively touching them and each other. If the last touches the first, this will also happen for any position of the first circle. Steiner’s porism Steiner’s chain G´abor Dam´asdi Steiner’s chain Jacob Steiner Jakob Steiner (1796 – 1863) was a Swiss mathematician who was professor and chair of geometry that was founded for him at Berlin (1834-1863). Steiner’s mathematical work was mainly confined to geometry. His investigations are distinguished by their great generality, by the fertility of his resources, and by the rigour in his proofs. He has been considered the greatest pure geometer since Apollonius of Perga. Porism A porism is a mathematical proposition or corollary. In particular, the term porism has been used to refer to a direct result of a proof, analogous to how a corollary refers to a direct result of a theorem. -
Efficiently Constructing Tangent Circles 3
EFFICIENTLY CONSTRUCTING TANGENT CIRCLES ARTHUR BARAGAR AND ALEX KONTOROVICH 1. Introduction The famous Problem of Apollonius is to construct a circle tangent to three given ones in a plane. The three circles may also be limits of circles, that is, points or lines, and “construct” of course refers to straightedge and compass. In this note, we consider the problem of constructing tangent circles from the point of view of efficiency. By this we mean using as few moves as possible, where a move is the act of drawing a line or circle. (Points are free as they do not harm the straightedge or compass, and all lines are considered endless, so there is no cost to “extending” a line segment.) Our goal is to present, in what we believe is the most efficient way possible, a construction of four mutually tangent circles. (Five circles of course cannot be mutually tangent in the plane, for their tangency graph, the complete graph K5, is non-planar.) We first present our construction before giving some remarks comparing it to others we found in the literature. 2. Baby Cases: One and Two Circles Constructing one circle obviously costs one move: let A and Z be any distinct points in the plane and draw the circle OA with center A and passing through Z. Given OA, constructing a second circle tangent to it costs two more moves: draw a line through AZ, and put an arbitrary point B on this line (say, outside OA). Now draw the circle OB with center B and passing through Z; then OA and OB are obviously tangent at Z, see Figure 1.