Circle Packing: a Mathematical Tale Kenneth Stephenson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Circle Packing Theorem
Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea in Matematica THE CIRCLE PACKING THEOREM Tesi di Laurea in Analisi Relatore: Pesentata da: Chiar.mo Prof. Georgian Sarghi Nicola Arcozzi Sessione Unica Anno Accademico 2018/2019 Introduction The study of tangent circles has a rich history that dates back to antiquity. Already in the third century BC, Apollonius of Perga, in his exstensive study of conics, introduced problems concerning tangency. A famous result attributed to Apollonius is the following. Theorem 0.1 (Apollonius - 250 BC). Given three mutually tangent circles C1, C2, 1 C3 with disjoint interiors , there are precisely two circles tangent to all the three initial circles (see Figure1). A simple proof of this fact can be found here [Sar11] and employs the use of Möbius transformations. The topic of circle packings as presented here, is sur- prisingly recent and originates from William Thurston's famous lecture notes on 3-manifolds [Thu78] in which he proves the theorem now known as the Koebe-Andreev- Thurston Theorem or Circle Packing Theorem. He proves it as a consequence of previous work of E. M. Figure 1 Andreev and establishes uniqueness from Mostov's rigid- ity theorem, an imporant result in Hyperbolic Geometry. A few years later Reiner Kuhnau pointed out a 1936 proof by german mathematician Paul Koebe. 1We dene the interior of a circle to be one of the connected components of its complement (see the colored regions in Figure1 as an example). i ii A circle packing is a nite set of circles in the plane, or equivalently in the Riemann sphere, with disjoint interiors and whose union is connected. -
View Front and Back Matter from The
VOLUME 20 NUMBER 1 JANUARY 2007 J OOUF THE RNAL A M E R I C AN M A T H E M A T I C A L S O C I ET Y EDITORS Ingrid Daubechies Robert Lazarsfeld John W. Morgan Andrei Okounkov Terence Tao ASSOCIATE EDITORS Francis Bonahon Robert L. Bryant Weinan E Pavel I. Etingof Mark Goresky Alexander S. Kechris Robert Edward Kottwitz Peter Kronheimer Haynes R. Miller Andrew M. Odlyzko Bjorn Poonen Victor S. Reiner Oded Schramm Richard L. Taylor S. R. S. Varadhan Avi Wigderson Lai-Sang Young Shou-Wu Zhang PROVIDENCE, RHODE ISLAND USA ISSN 0894-0347 Available electronically at www.ams.org/jams/ Journal of the American Mathematical Society This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics. Submission information. See Information for Authors at the end of this issue. Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval. Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. Subscription information. The Journal of the American Mathematical Society is published quarterly. Beginning January 1996 the Journal of the American Mathemati- cal Society is accessible from www.ams.org/journals/. Subscription prices for Volume 20 (2007) are as follows: for paper delivery, US$287 list, US$230 institutional member, US$258 corporate member, US$172 individual member; for electronic delivery, US$258 list, US$206 institutional member, US$232 corporate member, US$155 individual mem- ber. -
Non-Existence of Annular Separators in Geometric Graphs
Non-existence of annular separators in geometric graphs Farzam Ebrahimnejad∗ James R. Lee† Paul G. Allen School of Computer Science & Engineering University of Washington Abstract Benjamini and Papasoglou (2011) showed that planar graphs with uniform polynomial volume growth admit 1-dimensional annular separators: The vertices at graph distance ' from any vertex can be separated from those at distance 2' by removing at most $ ' vertices. They asked whether geometric 3-dimensional graphs with uniform polynomial volume¹ º growth similarly admit 3 1 -dimensional annular separators when 3 7 2. We show that this fails in a strong sense: For¹ any− 3º > 3 and every B > 1, there is a collection of interior-disjoint spheres in R3 whose tangency graph has uniform polynomial growth, but such that all annular separators in have cardinality at least 'B. 1 Introduction The well-known Lipton-Tarjan separator theorem [LT79] asserts that any =-vertex planar graph has a balanced separator with $ p= vertices. By the Koebe-Andreev-Thurston circle packing ¹ º theorem, every planar graph can be realized as the tangency graph of interior-disjoint circles in the plane. One can define 3-dimensional geometric graphs by analogy: Take a collection of “almost 3 non-overlapping” bodies (E R : E + , where each (E is “almost round,” and the associated f ⊆ 2 g geometric graph contains an edge D,E if (D and (E “almost touch.” f g As a prototypical example, suppose we require that every point G R3 is contained in at most : 2 of the bodies (E , each (E is a Euclidean ball, and two bodies are considered adjacent whenever f g (D (E < . -
On Dynamical Gaskets Generated by Rational Maps, Kleinian Groups, and Schwarz Reflections
ON DYNAMICAL GASKETS GENERATED BY RATIONAL MAPS, KLEINIAN GROUPS, AND SCHWARZ REFLECTIONS RUSSELL LODGE, MIKHAIL LYUBICH, SERGEI MERENKOV, AND SABYASACHI MUKHERJEE Abstract. According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group H whose limit set is an Apollonian- like gasket ΛH . We design a surgery that relates H to a rational map g whose Julia set Jg is (non-quasiconformally) homeomorphic to ΛH . We show for a large class of triangulations, however, the groups of quasisymmetries of ΛH and Jg are isomorphic and coincide with the corresponding groups of self- homeomorphisms. Moreover, in the case of H, this group is equal to the group of M¨obiussymmetries of ΛH , which is the semi-direct product of H itself and the group of M¨obiussymmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when ΛH is the classical Apollonian gasket), we give a piecewise affine model for the above actions which is quasiconformally equivalent to g and produces H by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle. Contents 1. Introduction 2 2. Round Gaskets from Triangulations 4 3. Round Gasket Symmetries 6 4. Nielsen Maps Induced by Reflection Groups 12 5. Topological Surgery: From Nielsen Map to a Branched Covering 16 6. Gasket Julia Sets 18 arXiv:1912.13438v1 [math.DS] 31 Dec 2019 7. -
Arxiv:1603.05202V1 [Math.MG] 16 Mar 2016 Etr .Itrue Peia Amnc 27 Harmonics Spherical Interlude: 3
Contents Packing, coding, and ground states Henry Cohn 1 Packing, coding, and ground states 3 Preface 3 Acknowledgments 3 Lecture 1. Sphere packing 5 1. Introduction 5 2. Motivation 6 3. Phenomena 8 4. Constructions 10 5. Difficulty of sphere packing 12 6. Finding dense packings 13 7. Computational problems 15 Lecture 2. Symmetry and ground states 17 1. Introduction 17 2. Potential energy minimization 18 3. Families and universal optimality 19 4. Optimality of simplices 23 Lecture 3. Interlude: Spherical harmonics 27 1. Fourier series 27 2. Fourier series on a torus 29 3. Spherical harmonics 31 Lecture4. Energyandpackingboundsonspheres 35 arXiv:1603.05202v1 [math.MG] 16 Mar 2016 1. Introduction 35 2. Linear programming bounds 37 3. Applying linear programming bounds 39 4. Spherical codes and the kissing problem 40 5. Ultraspherical polynomials 41 Lecture 5. Packing bounds in Euclidean space 47 1. Introduction 47 2. Poisson summation 49 3. Linear programming bounds 50 4. Optimization and conjectures 52 Bibliography 57 i Packing, coding, and ground states Henry Cohn Packing, coding, and ground states Henry Cohn Preface In these lectures, we’ll study simple models of materials from several different perspectives: geometry (packing problems), information theory (error-correcting codes), and physics (ground states of interacting particle systems). These per- spectives each shed light on some of the same problems and phenomena, while highlighting different techniques and connections. One noteworthy phenomenon is the exceptional symmetry that is found in certain special cases, and we’ll examine when and why it occurs. The overall theme of the lectures is thus order vs. -
The Sphere Packing Problem in Dimension 8 Arxiv:1603.04246V2
The sphere packing problem in dimension 8 Maryna S. Viazovska April 5, 2017 8 In this paper we prove that no packing of unit balls in Euclidean space R has density greater than that of the E8-lattice packing. Keywords: Sphere packing, Modular forms, Fourier analysis AMS subject classification: 52C17, 11F03, 11F30 1 Introduction The sphere packing constant measures which portion of d-dimensional Euclidean space d can be covered by non-overlapping unit balls. More precisely, let R be the Euclidean d vector space equipped with distance k · k and Lebesgue measure Vol(·). For x 2 R and d r 2 R>0 we denote by Bd(x; r) the open ball in R with center x and radius r. Let d X ⊂ R be a discrete set of points such that kx − yk ≥ 2 for any distinct x; y 2 X. Then the union [ P = Bd(x; 1) x2X d is a sphere packing. If X is a lattice in R then we say that P is a lattice sphere packing. The finite density of a packing P is defined as Vol(P\ Bd(0; r)) ∆P (r) := ; r > 0: Vol(Bd(0; r)) We define the density of a packing P as the limit superior ∆P := lim sup ∆P (r): r!1 arXiv:1603.04246v2 [math.NT] 4 Apr 2017 The number be want to know is the supremum over all possible packing densities ∆d := sup ∆P ; d P⊂R sphere packing 1 called the sphere packing constant. For which dimensions do we know the exact value of ∆d? Trivially, in dimension 1 we have ∆1 = 1. -
Sphere Packing, Lattice Packing, and Related Problems
Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered. -
A Probability-Rich ICM Reviewed
March. 2007 IMs Bulletin . A Probability-rich ICM reviewed Louis Chen, National University of Singapore, and Jean-François Le Wendelin Werner’s Work Gall, Ecole Normale Supérieure, report on the 2006 International Although the Fields Medal was awarded to Congress of Mathematicians, held last August in Madrid, Spain. a probabilist for the first time, it was not The 2006 International Congress of surprising that Wendelin Werner was the Mathematicians in Madrid was exception- one. Werner was born in Germany in 1968, ally rich in probability theory. Not only but his parents settled in France when he was the Fields Medal awarded for the first was one year old, and he acquired French time to a probabilist, Wendelin Werner nationality a few years later. After study- Wendelin Werner (see below), it was also awarded to Andrei ing at the Ecole Normale Supérieure de Okounkov whose work bridges probability Paris, he defended his PhD thesis in Paris with other branches of mathematics. Both in 1993, shortly after getting a permanent research position at the Okounkov and Werner had been invited to CNRS. He became a Professor at University Paris-Sud Orsay in give a 45-minute lecture each in the probability and statistics sec- 1997. Before winning the Fields Medal, he had received many other tion before their Fields Medal awards were announced. awards, including the 2000 Prize of the European Mathematical The newly created Gauss Prize (in full, the Carl Friedrich Gauss Society, the 2001 Fermat Prize, the 2005 Loève Prize and the 2006 Prize) for applications of mathematics was awarded to Kiyosi Itô, Polya Prize. -
Russell David Lyons
Russell David Lyons Education Case Western Reserve University, Cleveland, OH B.A. summa cum laude with departmental honors, May 1979, Mathematics University of Michigan, Ann Arbor, MI Ph.D., August 1983, Mathematics Sumner Myers Award for best thesis in mathematics Specialization: Harmonic Analysis Thesis: A Characterization of Measures Whose Fourier-Stieltjes Transforms Vanish at Infinity Thesis Advisers: Hugh L. Montgomery, Allen L. Shields Employment Indiana University, Bloomington, IN: James H. Rudy Professor of Mathematics, 2014{present. Indiana University, Bloomington, IN: Adjunct Professor of Statistics, 2006{present. Indiana University, Bloomington, IN: Professor of Mathematics, 1994{2014. Georgia Institute of Technology, Atlanta, GA: Professor of Mathematics, 2000{2003. Indiana University, Bloomington, IN: Associate Professor of Mathematics, 1990{94. Stanford University, Stanford, CA: Assistant Professor of Mathematics, 1985{90. Universit´ede Paris-Sud, Orsay, France: Assistant Associ´e,half-time, 1984{85. Sperry Research Center, Sudbury, MA: Researcher, summers 1976, 1979. Hampshire College Summer Studies in Mathematics, Amherst, MA: Teaching staff, summers 1977, 1978. Visiting Research Positions University of Calif., Berkeley: Visiting Miller Research Professor, Spring 2001. Microsoft Research: Visiting Researcher, Jan.{Mar. 2000, May{June 2004, July 2006, Jan.{June 2007, July 2008{June 2009, Sep.{Dec. 2010, Aug.{Oct. 2011, July{Oct. 2012, May{July 2013, Jun.{Oct. 2014, Jun.{Aug. 2015, Jun.{Aug. 2016, Jun.{Aug. 2017, Jun.{Aug. 2018. Weizmann Institute of Science, Rehovot, Israel: Rosi and Max Varon Visiting Professor, Fall 1997. Institute for Advanced Studies, Hebrew University of Jerusalem, Israel: Winston Fellow, 1996{97. Universit´ede Lyon, France: Visiting Professor, May 1996. University of Wisconsin, Madison, WI: Visiting Associate Professor, Winter 1994. -
SPATIAL STATISTICS of APOLLONIAN GASKETS 1. Introduction Apollonian Gaskets, Named After the Ancient Greek Mathematician, Apollo
SPATIAL STATISTICS OF APOLLONIAN GASKETS WEIRU CHEN, MO JIAO, CALVIN KESSLER, AMITA MALIK, AND XIN ZHANG Abstract. Apollonian gaskets are formed by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We experimentally study the nearest neighbor spacing, pair correlation, and electrostatic energy of centers of circles from Apol- lonian gaskets. Even though the centers of these circles are not uniformly distributed in any `ambient' space, after proper normalization, all these statistics seem to exhibit some interesting limiting behaviors. 1. introduction Apollonian gaskets, named after the ancient Greek mathematician, Apollonius of Perga (200 BC), are fractal sets obtained by starting from three mutually tangent circles and iter- atively inscribing new circles in the curvilinear triangular gaps. Over the last decade, there has been a resurgent interest in the study of Apollonian gaskets. Due to its rich mathematical structure, this topic has attracted attention of experts from various fields including number theory, homogeneous dynamics, group theory, and as a consequent, significant results have been obtained. Figure 1. Construction of an Apollonian gasket For example, it has been known since Soddy [23] that there exist Apollonian gaskets with all circles having integer curvatures (reciprocal of radii). This is due to the fact that the curvatures from any four mutually tangent circles satisfy a quadratic equation (see Figure 2). Inspired by [12], [10], and [7], Bourgain and Kontorovich used the circle method to prove a fascinating result that for any primitive integral (integer curvatures with gcd 1) Apollonian gasket, almost every integer in certain congruence classes modulo 24 is a curvature of some circle in the gasket. -
Fixed Points, Koebe Uniformization and Circle Packings
Annals of Mathematics, 137 (1993), 369-406 Fixed points, Koebe uniformization and circle packings By ZHENG-XU HE and ODED SCHRAMM* Contents Introduction 1. The space of boundary components 2. The fixed-point index 3. The Uniqueness Theorem 4. The Schwarz-Pick lemma 5. Extension to the boundary 6. Maximum modulus, normality and angles 7. Uniformization 8. Domains in Riemann surfaces 9. Uniformizations of circle packings Addendum Introduction A domain in the Riemann sphere C is called a circle domain if every connected component of its boundary is either a circle or a point. In 1908, P. Koebe [Kol] posed the following conjecture, known as Koebe's Kreisnormierungsproblem: A ny plane domain is conformally homeomorphic to a circle domain in C. When the domain is simply connected, this is the con tent of the Riemann mapping theorem. The conjecture was proved for finitely connected domains and certain symmetric domains by Koebe himself ([K02], [K03]); for domains with various conditions on the "limit boundary compo nents" by R. Denneberg [De], H. Grotzsch [Gr], L. Sario [Sa], H. Meschowski *The authors were supported by N.S.F. Grants DMS-9006954 and DMS-9112150, respectively. The authors express their thanks to Mike Freedman, Dennis Hejhal, Al Marden, Curt McMullen, Burt Rodin, Steffen Rohde and Bill Thurston for conversations relating to this work. Also thanks are due to the referee, and to Steffen Rohde, for their careful reading and subsequent corrections. The paper of Sibner [Si3l served as a very useful introduction to the subject. I. Benjamini, O. Häggström (eds.), Selected Works of Oded Schramm, Selected Works in Probability and Statistics, DOI 10.1007/978-1-4419-9675-6_6, C Springer Science+Business Media, LLC 2011 105 370 z.-x. -
Geometry and Arithmetic of Crystallographic Sphere Packings
Geometry and arithmetic of crystallographic sphere packings Alex Kontorovicha,b,1 and Kei Nakamuraa aDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08854; and bSchool of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 Edited by Kenneth A. Ribet, University of California, Berkeley, CA, and approved November 21, 2018 (received for review December 12, 2017) We introduce the notion of a “crystallographic sphere packing,” argument leading to Theorem 3 comes from constructing circle defined to be one whose limit set is that of a geometrically packings “modeled on” combinatorial types of convex polyhedra, finite hyperbolic reflection group in one higher dimension. We as follows. exhibit an infinite family of conformally inequivalent crystallo- graphic packings with all radii being reciprocals of integers. We (~): Polyhedral Packings then prove a result in the opposite direction: the “superintegral” Let Π be the combinatorial type of a convex polyhedron. Equiv- ones exist only in finitely many “commensurability classes,” all in, alently, Π is a 3-connectedz planar graph. A version of the at most, 20 dimensions. Koebe–Andreev–Thurston Theorem§ says that there exists a 3 geometrization of Π (that is, a realization of its vertices in R with sphere packings j crystallographic j arithmetic j polyhedra j straight lines as edges and faces contained in Euclidean planes) Coxeter diagrams having a midsphere (meaning, a sphere tangent to all edges). This midsphere is then also simultaneously a midsphere for the he goal of this program is to understand the basic “nature” of dual polyhedron Πb. Fig. 2A shows the case of a cuboctahedron Tthe classical Apollonian gasket.