Rational deformations of conformal mechanics Jos´eF. Cari˜nenaa, Luis Inzunzab and Mikhail S. Plyushchayb aDepartamento de F´ısica Te´orica, Universidad de Zaragoza, 50009 Zaragoza, Spain bDepartamento de F´ısica, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile E-mails:
[email protected],
[email protected],
[email protected] Abstract We study deformations of the quantum conformal mechanics of De Alfaro-Fubini-Furlan with rational additional potential term generated by applying the generalized Darboux-Crum- Krein-Adler transformations to the quantum harmonic oscillator and by using the method of dual schemes and mirror diagrams. In this way we obtain infinite families of isospectral and non-isospectral deformations of the conformal mechanics model with special values of the coupling constant g = m(m + 1), m ∈ N, in the inverse square potential term, and for each completely isospectral or gapped deformation given by a mirror diagram, we identify the sets of the spectrum-generating ladder operators which encode and coherently reflect its fine spectral structure. Each pair of these operators generates a nonlinear deformation of the conformal symmetry, and their complete sets pave the way for investigation of the associated superconformal symmetry deformations. 1 Introduction Conformal mechanics of De Alfaro, Fubini and Furlan was introduced and studied as a (0+1)- dimensional conformal field theory [1]. This system corresponds to a simplest two-body case of the N-body Calogero model [2, 3, 4] with eliminated center of mass degree of freedom. The same quantum harmonic oscillator model with a centrifugal barrier [1] appeared in the literature later under the name of the isotonic oscillator [5].