The Physics of Quantum Mechanics Solutions to Problems That Are Not on Problem Sets
1 The Physics of Quantum Mechanics Solutions to problems that are not on problem sets 2.10 Let ψ(x) be a properly normalised wavefunction and Q an operator on wavefunctions. Let q be the spectrum of Q and u (x) be the corresponding correctly normalised eigenfunctions. { r} { r } Write down an expression for the probability that a measurement of Q will yield the value qr. Show ∞ ∗ ˆ 1 that r P (qr ψ)=1. Show further that the expectation of Q is Q −∞ ψ Qψ dx. Soln: | ≡ 2 ∗ Pi = dxui (x)ψ(x) where Qui(x)= qiui(x). 1= dx ψ 2 = dx a∗u∗ a u = a∗a dxu∗u = a 2 = P | | i i j j i j i j | i| i i j ij i i Similarly dx ψ∗Qψ = dx a∗u∗ Q a u = a∗a dxu∗Qu i i j j i j i j i j ij = a∗a q dxu∗u = a 2q = P q i j j i j | i| i i i ij i i which is by definition the expectation value of Q. 2.22 Show that for any three operators A, B and C, the Jacobi identity holds: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. (2.1) Soln: We expand the inner commutator and then use the rule for expanding the commutator of a product: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = [A, BC] [A,CB] + [B,CA] [B, AC] + [C,AB] [C,BA] − − − = [A, B]C + B[A, C] [A, C]B C[A, B] + [B, C]A + C[B, A] [B, A]C − − − A[B, C] + [C, A]B + A[C,B] [C,B]A B[C, A] − − − = 2 ([A, B]C C[A, B] [A, C]B + B[A, C] + [B, C]A A[B, C]) − − − =2 ABC BAC CAB + CBA ACB + CAB + BAC BCA + BCA − − − − CBA ABC + ACB =0 − − 3.9∗ By expressing the annihilation operator A of the harmonic oscillator in the momentum rep- resentation, obtain p 0 .
[Show full text]