Insights from EEG-Based Pattern Analysis and Image Reconstruction

Total Page:16

File Type:pdf, Size:1020Kb

Insights from EEG-Based Pattern Analysis and Image Reconstruction New Research Sensory and Motor Systems The Neural Dynamics of Facial Identity Processing: Insights from EEG-Based Pattern Analysis and Image Reconstruction Dan Nemrodov,1 Matthias Niemeier,1 Ashutosh Patel,1 and Adrian Nestor1 DOI:http://dx.doi.org/10.1523/ENEURO.0358-17.2018 1Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada Abstract Uncovering the neural dynamics of facial identity processing along with its representational basis outlines a major endeavor in the study of visual processing. To this end, here, we record human electroencephalography (EEG) data associated with viewing face stimuli; then, we exploit spatiotemporal EEG information to determine the neural correlates of facial identity representations and to reconstruct the appearance of the corresponding stimuli. Our findings indicate that multiple temporal intervals support: facial identity classification, face space estimation, visual feature extraction and image reconstruction. In particular, we note that both classification and reconstruc- tion accuracy peak in the proximity of the N170 component. Further, aggregate data from a larger interval (50–650 ms after stimulus onset) support robust reconstruction results, consistent with the availability of distinct visual information over time. Thus, theoretically, our findings shed light on the time course of face processing while, methodologically, they demonstrate the feasibility of EEG-based image reconstruction. Key words: ERP; face space; image reconstruction; N170; pattern analysis; spatiotemporal dynamics Significance Statement Identifying a face is achieved through fast and efficient processing of visual information. Here, we investigate the nature of this information, its specific content and its availability at a fine-grained temporal scale. Notably, we provide a way to extract, to assess and to visualize such information from neural data associated with individual face processing. Thus, the present work accounts for the time course of face individuation through appeal to its underlying visual representations while, also, it provides a first demon- stration regarding the ability to reconstruct the appearance of stimulus images from electroencephalogra- phy (EEG) data. Introduction this end, considerable efforts have been devoted to char- Elucidating the dynamics of visual face processing is acterizing the time course of face processing especially essential to understanding its underlying mechanisms. To through the use of electroencephalography (EEG) and magnetoencephalography (MEG) given the temporal res- Received October 12, 2017; accepted January 12, 2018; First published Correspondence should be addressed to Dan Nemrodov, Department of January 29, 2018. Psychology at Scarborough, University of Toronto, 1265 Military Trail, Toronto, The authors declare no competing financial interests. Ontario M1C1A4, Canada, E-mail: [email protected]. Author contributions: D.N., M.N., and A.N. designed research; D.N., A.P., DOI:http://dx.doi.org/10.1523/ENEURO.0358-17.2018 and A.N. performed research; D.N. and A.N. analyzed data; D.N., M.N., A.P., Copyright © 2018 Nemrodov et al. and A.N. wrote the paper. This is an open-access article distributed under the terms of the Creative This work was supported by the Natural Sciences and Engineering Research Commons Attribution 4.0 International license, which permits unrestricted use, Council of Canada (A.N. and M.N.) and by a Connaught New Researcher distribution and reproduction in any medium provided that the original work is Award (A.N.). properly attributed. January/February 2018, 5(1) e0358-17.2018 1–17 New Research 2 of 17 olution of these methods. Accordingly, much is known To address the issues above, the current work aims to about the temporal profile of face processing as reflected derive face space constructs from the EEG signal asso- by either traditional event-related potentials (ERPs; Bentin ciated with consecutive time windows separately for dif- and Deouell, 2000; Itier and Taylor, 2002; Huddy et al., ferent facial expressions (i.e., neutral and happy). Then, it 2003; Tanaka et al., 2006; Rossion and Caharel, 2011; reconstructs the appearance of one set of faces (e.g., Zheng et al., 2012), or by spatiotemporal patterns (Liu happy) based on the structure of the face space derived et al., 2009; Cichy et al., 2014; Vida et al., 2017). Com- for the other faces (e.g., neutral). This demonstration pro- paratively less is known about the visual representations vides evidence that the spatiotemporal information of underlying the dynamics of face processing, especially as EEG patterns is rich enough to support: (1) identity-level related to facial identity. To shed light on this issue, the face discrimination; (2) neural-based face space estima- present work employs an image-reconstruction paradigm tion; (3) visual feature synthesis; and (4) facial image (Miyawaki et al., 2008; Naselaris et al., 2009; Nishimoto reconstruction. Further, this work characterizes the neural et al., 2011; Cowen et al., 2014; Chang and Tsao, 2017) dynamics of expression-invariant face processing while, seeking to approximate the visual appearance of individ- more generally, it provides proof of concept for the pos- ual faces from spatiotemporal EEG patterns. Concretely, sibility of EEG-based image reconstruction. this work aims to answer whether the visual information involved in face identification can be recovered from EEG Materials and Methods signals and, further, whether such information can sup- Participants port the characterization of neural-based face space Thirteen healthy adults (six males, seven females; age along with the reconstruction of individual face images. range: 18–27 years) with normal or corrected-to-normal Recent applications of pattern analysis have focused vision were recruited from the University of Toronto com- on the temporal profile of face discrimination at the cat- munity to participate in the study in exchange for mone- egory (Carlson et al., 2013; Van de Nieuwenhuijzen et al., tary compensation. All participants provided informed 2013; Cauchoix et al., 2014; Cichy et al., 2014; Kaneshiro consent and all experimental procedures were approved et al., 2015) and the exemplar level (Davidesco et al., by the Research Ethics Board at the University of Toronto. 2014; Ghuman, et al., 2014). For instance, expression- The data of all participants were included in the analyses invariant identity discrimination has been conducted reported below. using MEG (Vida et al., 2017), electrocorticography (Ghu- man et al., 2014) and EEG (Nemrodov et al., 2016). These Stimuli studies found multiple, distinct temporal windows sensi- A total of 140 face images of 70 individuals, each tive to facial information and, consistent with results from displaying a neutral and a happy expression were used as monkey neurophysiology (Hung et al., 2005; Freiwald experimental stimuli. Out of these, 108 images of 54 et al., 2009) and human psychophysics (Lehky, 2000; unfamiliar males were selected from three databases: AR Tanaka and Curran, 2001; Crouzet et al., 2010), have (Martinez and Benavente, 1998), Radboud (Langner et al., estimated an early onset for such sensitivity (Ghuman 2010), and FEI (Thomaz and Giraldi, 2010). The remaining et al., 2014; Nemrodov et al., 2016). Further, the cortical 32 images displayed faces of six famous male and 10 source of this information was attributed primarily to the female individuals selected from open access sources. To fusiform gyrus (FG) in line with homologous investigations be clear, unfamiliar male face stimuli are the focus of the of face identification using functional magnetic resonance present investigation while female faces were used as go imaging (fMRI; Nestor et al., 2011; Goesaert and Op de trials in a go/no-go gender recognition task (see Experi- Beeck, 2013; Anzellotti et al., 2014). mental design) and additional famous male faces were Yet, the representational basis of facial identity that included to promote alertness (however, no results are allows successful discrimination from neural data remains reported for them below due to the smaller stimulus set to be elucidated. Arguably, neural patterns elicited by that precluded a separate examination of famous face face perception speak to the properties of a representa- recognition). tional face space (Valentine, 1991), or, more generally, of All images featured young adult white individuals with a representational similarity space (Kriegeskorte et al., frontal view, gaze and illumination. The stimuli were se- 2008). In an effort to clarify the nature of such represen- lected so that no facial accessories, hair or makeup ob- tations, recent fMRI work (Nestor et al., 2016) has com- scured the internal features of the face and so that all bined the study of face space and neural-based image happy expressions displayed an open-mouth smile. reconstruction. Specifically, this work has derived visual These images were: (1) scaled uniformly and aligned with features from the structure of FG-based face space and, roughly the same position of the eyes and the nose; (2) then, used such features for facial image reconstruction. cropped to eliminate background; (3) normalized with the However, this work did not consider the temporal aspects same mean and root mean square (RMS) contrast values color ءbءaءof face processing, neither did it assess the invariant separately for each color channel in CIEL structure of a facial identity
Recommended publications
  • Investigating the Association Between Parity and the Maternal Neural Response to Infant Cues
    Social Neuroscience ISSN: 1747-0919 (Print) 1747-0927 (Online) Journal homepage: http://www.tandfonline.com/loi/psns20 Investigating the association between parity and the maternal neural response to infant cues Angela N. Maupin, Helena J. V. Rutherford, Nicole Landi, Marc N. Potenza & Linda C. Mayes To cite this article: Angela N. Maupin, Helena J. V. Rutherford, Nicole Landi, Marc N. Potenza & Linda C. Mayes (2018): Investigating the association between parity and the maternal neural response to infant cues, Social Neuroscience, DOI: 10.1080/17470919.2017.1422276 To link to this article: https://doi.org/10.1080/17470919.2017.1422276 Accepted author version posted online: 02 Jan 2018. Published online: 08 Jan 2018. Submit your article to this journal Article views: 32 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=psns20 SOCIAL NEUROSCIENCE, 2018 https://doi.org/10.1080/17470919.2017.1422276 ARTICLE Investigating the association between parity and the maternal neural response to infant cues Angela N. Maupina, Helena J. V. Rutherforda, Nicole Landia,b,c, Marc N. Potenzaa,d and Linda C. Mayesa aYale Child Study Center, Yale University School of Medicine, New Haven, CT, USA; bHaskins Laboratories, Yale University, New Haven, CT, USA; cDepartment of Psychology, University of Connecticut, New Haven, CT, USA; dDepartments of Psychiatry and Neurobiology and CASAColumbia, Yale University School of Medicine, New Haven, CT, USA ABSTRACT ARTICLE HISTORY Understanding the maternal neural response to infant affective cues has important implications for Received 8 June 2017 parent-child relationships.
    [Show full text]
  • ERP Peaks Review 1 LINKING BRAINWAVES to the BRAIN
    ERP Peaks Review 1 LINKING BRAINWAVES TO THE BRAIN: AN ERP PRIMER Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Psychological and Brain Sciences University of Louisville Louisville, Kentucky Short title: ERPs Peak Review. Key Words: ERP, peak, latency, brain activity source, electrophysiology. Please address all correspondence to: Alexandra P. Fonaryova Key, Ph.D. Department of Psychological and Brain Sciences 317 Life Sciences, University of Louisville Louisville, KY 40292-0001. [email protected] ERP Peaks Review 2 Linking Brainwaves To The Brain: An ERP Primer Alexandra Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Abstract This paper reviews literature on the characteristics and possible interpretations of the event- related potential (ERP) peaks commonly identified in research. The description of each peak includes typical latencies, cortical distributions, and possible brain sources of observed activity as well as the evoking paradigms and underlying psychological processes. The review is intended to serve as a tutorial for general readers interested in neuropsychological research and a references source for researchers using ERP techniques. ERP Peaks Review 3 Linking Brainwaves To The Brain: An ERP Primer Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Over the latter portion of the past century recordings of brain electrical activity such as the continuous electroencephalogram (EEG) and the stimulus-relevant event-related potentials (ERPs) became frequent tools of choice for investigating the brain’s role in the cognitive processing in different populations. These electrophysiological recording techniques are generally non-invasive, relatively inexpensive, and do not require participants to provide a motor or verbal response.
    [Show full text]
  • Rapid P300 Brain-Computer Interface Communication with a Head-Mounted Display
    ORIGINAL RESEARCH published: 05 June 2015 doi: 10.3389/fnins.2015.00207 Rapid P300 brain-computer interface communication with a head-mounted display Ivo Käthner 1*, Andrea Kübler 1 and Sebastian Halder 1, 2 1 Institute of Psychology, University of Würzburg, Würzburg, Germany, 2 Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient’s bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for Edited by: Emanuel Donchin, a severely paralyzed person. Healthy participants performed online spelling with three University of South Florida, USA different display methods. In one condition a 5 × 5 letter matrix was presented on a Reviewed by: conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In Fabien Lotte, the first (glasses A), the same 5×5 matrix filled the field of view of the user. In the second INRIA (National Institute for Computer Science and Control), France (glasses B), single letters of the matrix filled the field of view of the user.
    [Show full text]
  • Analysis of a Choice-Reaction Task Yields a New Interpretation of Libet's Experiments ⁎ Christoph S
    Available online at www.sciencedirect.com International Journal of Psychophysiology 67 (2008) 151–157 www.elsevier.com/locate/ijpsycho Fast track report Analysis of a choice-reaction task yields a new interpretation of Libet's experiments ⁎ Christoph S. Herrmann a,b,e, , Michael Pauen b,d,f, Byoung-Kyong Min a, Niko A. Busch a, Jochem W. Rieger c a Otto-von-Guericke-University, Dept. for Biological Psychology, Magdeburg, Germany b Center for Behavioural Brain Sciences, Magdeburg, Germany c Otto-von-Guericke-University, Dept., for Neurology II, Magdeburg, Germany d Humboldt-University, Institute for Philosophy, Berlin, Germany e Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany f Berlin School of Mind and Brain, Germany Received 23 March 2007; received in revised form 11 October 2007; accepted 15 October 2007 Available online 22 November 2007 Abstract Benjamin Libet has demonstrated that the readiness potential precedes the time at which participants consciously decide to perform an intentional motor act, and suggested that free will is an illusion. We performed an experiment where participants observed a stimulus on a computer monitor and were instructed to press one of two buttons, depending on the presented stimulus. We found neural activity preceding the motor response, similar to Libet's experiments. However, this activity was already present prior to stimulus presentation, and thus before participants could decide which button to press. Therefore, we argue that this activity does not specifically determine behaviour. Instead, it may reflect a general expectation. This interpretation would not interfere with the notion of free will. © 2007 Elsevier B.V.
    [Show full text]
  • Working Memory Load for Faces Modulates P300, N170, and N250r
    Working Memory Load for Faces Modulates P300, N170, and N250r Helen M. Morgan, Christoph Klein, Stephan G. Boehm, Kimron L. Shapiro, and David E. J. Linden Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/20/6/989/1759555/jocn.2008.20072.pdf by guest on 18 May 2021 Abstract & We used event-related potential (ERP) methodology to ex- was also found to modulate other ERPs. The amplitude of the amine neural activity associated with visual working memory N170 elicited by the target face decreased with load, and this (WM) for faces. There were two main goals. First, to extend N170 decrease leveled off at load 2, reflecting the behavioral WM previous findings of P300 load modulation to WM for faces. capacity of around two faces. In addition, the N250r, observed as Second, to examine whether N170 and N250r are also influ- an ERP difference for target faces that were present in the encod- enced by WM load. Between one and four unfamiliar faces were ing array relative to target faces that were absent, was also reduced simultaneously presented for memory encoding. After a 1-sec for higher WM loads. These findings extend previous work by delay, a target face appeared, and participants had to judge showing that P300 modulation by WM load also occurs for faces. whether this face was part of the previous face array. P300 Furthermore, we show, for the first time, that WM load affects the amplitude decreased as WM load increased, and this P300 sup- N250r and the early visual N170 component. This suggests that pression was observed at both encoding and retrieval.
    [Show full text]
  • Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception
    12828 • The Journal of Neuroscience, September 17, 2014 • 34(38):12828–12836 Behavioral/Cognitive Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception Vinitha Rangarajan,1,2 Dora Hermes,2 Brett L. Foster,1,2 Kevin S. Weiner,2,3 X Corentin Jacques,2,3,4 Kalanit Grill-Spector,2,3,5 and Josef Parvizi1,2,5 1Laboratory of Behavioral and Cognitive Neurology, Department of Neurology and Neurological Sciences, 2Stanford Human Intracranial Cognitive Electrophysiology Program, 3Vision and Perception Neuroscience Laboratory, Department of Psychology, Stanford, California 94305, 4Psychological Sciences Research Institute, Universite´ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, and 5Stanford Neuroscience Institute, Stanford University, Stanford, California 94305 Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded percep- tual reports during EBS of these sites.
    [Show full text]
  • Preliminary Evidence of the N170 As a Biomarker of Response to Treatment in Autism Spectrum Disorder
    BRIEF RESEARCH REPORT published: 29 June 2021 doi: 10.3389/fpsyt.2021.709382 Brief Report: Preliminary Evidence of the N170 as a Biomarker of Response to Treatment in Autism Spectrum Disorder Shashwat Kala 1†, Max J. Rolison 1†, Dominic A. Trevisan 1, Adam J. Naples 1, Kevin Pelphrey 2, Pamela Ventola 1 and James C. McPartland 1* 1 Child Study Center, Yale School of Medicine, New Haven, CT, United States, 2 Department of Neurology, University of Virginia, Charlottesville, VA, United States Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by primary difficulties in social function. Individuals with ASD display slowed neural processing of faces, as indexed by the latency of the N170, a face-sensitive event-related potential. Currently, there are no objective biomarkers of ASD useful in Edited by: Maria Luisa Scattoni, clinical care or research. Efficacy of behavioral treatment is currently evaluated through National Institute of Health (ISS), Italy subjective clinical impressions. To explore whether the N170 might have utility as an Reviewed by: objective index of treatment response, we examined N170 before and after receipt of an Estate M. Sokhadze, University of South Carolina, empirically validated behavioral treatment in children with ASD. United States Method: Electroencephalography (EEG) data were obtained on a preliminary cohort Kathryn K. Chadman, Institute for Basic Research in of preschool-aged children with ASD before and after a 16-week course of PRT and Developmental Disabilities (IBR), in a subset of participants in waitlist control (16-weeks before the start of PRT) and United States follow-up (16-weeks after the end of PRT).
    [Show full text]
  • The Effects of Dynamic and Static Emotional Facial Expressions of Humans and Their Avatars on the EEG: an ERP and ERD/ERS Study
    fnins-15-651044 April 19, 2021 Time: 10:44 # 1 ORIGINAL RESEARCH published: 22 April 2021 doi: 10.3389/fnins.2021.651044 The Effects of Dynamic and Static Emotional Facial Expressions of Humans and Their Avatars on the EEG: An ERP and ERD/ERS Study Teresa Sollfrank1*, Oona Kohnen1, Peter Hilfiker1, Lorena C. Kegel1,2, Hennric Jokeit1,2, Peter Brugger3,4, Miriam L. Loertscher5, Anton Rey5, Dieter Mersch6, Joerg Sternagel6, Michel Weber5 and Thomas Grunwald1 1 Swiss Epilepsy Center, Zurich, Switzerland, 2 Department of Psychology, University of Zurich, Zurich, Switzerland, 3 Valens Rehabilitation Centre, Valens, Switzerland, 4 Psychiatric University Hospital Zurich, Zurich, Switzerland, 5 Institute for the Performing Arts and Film, Zurich University of the Arts, Zurich, Switzerland, 6 Institute for Critical Theory, Zurich University of the Arts, Zurich, Switzerland Edited by: This study aimed to examine whether the cortical processing of emotional faces is Burcu Aysen Urgen, Bilkent University, Turkey modulated by the computerization of face stimuli ("avatars") in a group of 25 healthy Reviewed by: participants. Subjects were passively viewing 128 static and dynamic facial expressions Sebastian Schindler, of female and male actors and their respective avatars in neutral or fearful conditions. University of Münster, Germany Event-related potentials (ERPs), as well as alpha and theta event-related synchronization Alexander Nikolaevich Savostyanov, and desynchronization (ERD/ERS), were derived from the EEG that was recorded during State Scientific-Research Institute the task. All ERP features, except for the very early N100, differed in their response of Physiology and Basic Medicine, Russia to avatar and actor faces. Whereas the N170 showed differences only for the neutral *Correspondence: avatar condition, later potentials (N300 and LPP) differed in both emotional conditions Teresa Sollfrank (neutral and fear) and the presented agents (actor and avatar).
    [Show full text]
  • ERP TUTORIAL 1 a Brief Introduction to the Use of Event-Related Potentials
    ERP TUTORIAL 1 A Brief Introduction to the Use of Event-Related Potentials (ERPs) in Studies of Perception and Attention Geoffrey F. Woodman Vanderbilt University Vanderbilt Vision Research Center Center for Integrative and Cognitive Neuroscience Abstract Due to the precise temporal resolution of electrophysiological recordings, the event-related potential (ERP) technique has proven particularly valuable for testing theories of perception and attention. Here, I provide a brief tutorial of the ERP technique for consumers of such research and those considering the use of human electrophysiology in their own work. My discussion begins with the basics regarding what brain activity ERPs measure and why they are well suited to reveal critical aspects of perceptual processing, attentional selection, and cognition that are unobservable with behavioral methods alone. I then review a number of important methodological issues and often forgotten facts that should be considered when evaluating or planning ERP experiments. Electroencephalogram (EEG) technique continue to make it one of the most recordings were the first method developed for widely used methods to study the architecture direct and noninvasive measurements brain of cognitive processing. activity from human subjects (Adrian & The primary goal of this tutorial is to Yamagiwa, 1935; Berger, 1929; Jasper, 1937, introduce researchers who are unfamiliar with 1948). By noting when stimuli were presented ERPs to their use, interpretation, and and tasks were performed, early studies dissemination in studies of sensation, examining the raw EEG sought to characterize perception, attention, and cognition. I hope the changes in the state of electrical activity that the uninitiated readers will become better during sensory processing and the consumers of ERP research.
    [Show full text]
  • Multimodal Emotion Processing in Autism Spectrum Disorders
    Developmental Cognitive Neuroscience 3 (2013) 11–21 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at SciVerse ScienceDirect provided by Elsevier - Publisher Connector Developmental Cognitive Neuroscience j ournal homepage: http://www.elsevier.com/locate/dcn Multimodal emotion processing in autism spectrum disorders: An event-related potential study a,b,∗ c a Matthew D. Lerner , James C. McPartland , James P. Morris a Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904-4400, United States b Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Avenue, MC 3077, Chicago, IL 60637, United States c Child Study Center, Yale University, 230 South Frontage Road, New Haven, CT 06520, United States a r t i c l e i n f o a b s t r a c t Article history: This study sought to describe heterogeneity in emotion processing in autism spectrum Received 14 April 2012 disorders (ASD) via electrophysiological markers of perceptual and cognitive processes Received in revised form 17 August 2012 that underpin emotion recognition across perceptual modalities. Behavioral and neural Accepted 22 August 2012 indicators of emotion processing were collected, as event-related potentials (ERPs) were recorded while youth with ASD completed a standardized facial and vocal emotion identi- Keywords: fication task. Children with ASD exhibited impaired emotion recognition performance for Autism spectrum disorder ERP adult faces and child voices, with a subgroup displaying intact recognition. Latencies of early N170 perceptual ERP components, marking social information processing speed, and amplitudes of Emotion processing subsequent components reflecting emotion evaluation, each correlated across modalities.
    [Show full text]
  • The Role of Oxytocin in Modulating Neural Oscillations in Nulliparous Women Xiaoyue Mona Guo Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2016 The Role Of Oxytocin In Modulating Neural Oscillations In Nulliparous Women Xiaoyue Mona Guo Yale University Follow this and additional works at: https://elischolar.library.yale.edu/ymtdl Recommended Citation Guo, Xiaoyue Mona, "The Role Of Oxytocin In Modulating Neural Oscillations In Nulliparous Women" (2016). Yale Medicine Thesis Digital Library. 2053. https://elischolar.library.yale.edu/ymtdl/2053 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. The Role of Oxytocin in Modulating Neural Oscillations in Nulliparous Women A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine by Xiaoyue Mona Guo 2016 ABSTRACT THE ROLE OF OXYTOCIN IN MODULATING NEURAL OSCILLATIONS IN NULLIPAROUS WOMEN. Xiaoyue Mona Guo, Helena J.V. Rutherford, Linda C. Mayes. Child Study Center, Yale University, School of Medicine, New Haven, CT. The hormone oxytocin (OT) has been implicated in social cognition and behavior as well as in modulating important affiliative relationships such as parenting; meanwhile, intranasal OT administration is gaining popularity as a means to modulate neural activity in brain regions during experimental tasks. However, the neural mechanisms underscoring the changes associated with OT administration have yet to be fully elucidated.
    [Show full text]
  • The Brain, Explained’: a Response Process Theory of Brain Function
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 June 2018 doi:10.20944/preprints201806.0092.v1 Short Version of ‘The Brain, Explained’: A Response Process Theory of Brain Function Ari Rappoport The Hebrew University of Jerusalem, Israel [email protected] www.cs.huji.ac.il/~arir Abstract Understanding brain function is one of the most important open problems in science today. At present, there is no concrete theory for how the brain works. Here, a the- ory is presented that provides a detailed mechanistic biological account of the brain’s capacities. Brain function is managed by a response (R) process that is structurally similar to the immune response, and shows anatomical and molecular specificity. Dif- ferent R process stages utilize different cortical layers, hippocampus fields, basal gan- glia paths, GABAergic interneurons, cerebellum paths, and molecular agents such as dopamine, serotonin and opioids. We show how the R process supports hierarchical action sequences, language and thought. The theory is supported by a large body of experimental evidence in many modalities, and accounts for virtually all of the major facts known about the brain at the system level. Keywords. Neuroscience, basal ganglia, cortical layers, cerebellum, habenula, inhi- bition, predictions, dopamine, serotonin, acetylcholine, opioids, mirror neurons, place cells, language, imagery, working memory. 1 Introduction How the brain works is one of the major open problems in science today. Following New- ton, Einstein, Darwin and many others, we understand many aspects of the physical world and life. However, we do not understand how living organisms act and think. These ca- pacities are known to be mediated by the brain, but currently there exists no brain theory or anything close to it [Grillner, 2014], despite the enormous amount of invested research effort.
    [Show full text]